Về kiến thức:
Qua bài này học sinh cần hiểu rõ:
- Định nghĩa cực đại và cực tiểu của hàm số
- Điều kiện cần và đủ để hàm số đạt cực đại hoặc cực tiểu.
- Hiểu rỏ hai quy tắc 1 và 2 để tìm cực trị của hàm số.
+ Về kỹ năng:
Sử dụng thành thạo quy tắc 1 và 2 để tìm cực trị của hàm số và một số bài toán có liền quan đến cực trị.
+ Về tư duy và thái độ:
- Thái độ: tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv, năng động, sáng tạo trong quá trình tiếp cận tri thức mới, thấy được lợi ích của toán học trong đời sống, từ đó hình thành niềm say mê khoa học, và có những đóng góp sau này cho xã hội.
Trêng THPT T©n Yªn 2 Tæ To¸n TiÕt theo ph©n phèi ch¬ng tr×nh : 4. Ch¬ng 1: øng Dông §¹o Hµm §Ó Kh¶o S¸t vµ VÏ §å ThÞ Hµm Sè §2: Cực Trị Của Hàm Số ( 3tiÕt) Ngµy so¹n: 14/8/2009 TiÕt 1 I. Mục tiêu: + Về kiến thức: Qua bài này học sinh cần hiểu rõ: - Định nghĩa cực đại và cực tiểu của hàm số - Điều kiện cần và đủ để hàm số đạt cực đại hoặc cực tiểu. - Hiểu rỏ hai quy tắc 1 và 2 để tìm cực trị của hàm số. + Về kỹ năng: Sử dụng thành thạo quy tắc 1 và 2 để tìm cực trị của hàm số và một số bài toán có liền quan đến cực trị. + Về tư duy và thái độ: - Thái độ: tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv, năng động, sáng tạo trong quá trình tiếp cận tri thức mới, thấy được lợi ích của toán học trong đời sống, từ đó hình thành niềm say mê khoa học, và có những đóng góp sau này cho xã hội. - Tư duy: hình thành tư duy logic, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ. II. Chuẩn bị của giáo viên và học sinh: + Giáo viên: Bảng phụ minh hoạ các ví dụ và hình vẽ trong sách giáo khoa. + Học sinh: làm bài tập ở nhà và nghiên cứu trước bài mới. III. Phương pháp: - Thuyết trình, kết hợp thảo luận nhóm và hỏi đáp. IV. Tiến trình bài học: 1. Ổn định tổ chức: kiểm tra sĩ số học sinh 2. Kiểm tra bài cũ: Câu hỏi: Xét sự biến thiên của hàm số: y = -x3 + 3x2 + 2 Thời gian Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng 10’ - Gọi 1 học sinh lên trình bày bài giải. - Nhận xét bài giải của học sinh và cho điểm. - Treo bảng phụ 1 có bài giải hoàn chỉnh. - Trình bày bài giải (Bảng phụ 1) 3. Bài mới: Hoạt động 1: Tìm hiểu khái niệm cực trị của hàm số Thời gian Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng 8’ - Yêu cầu học sinh dựa vào BBT (bảng phụ 1) trả lời 2 câu hỏi sau: * Nếu xét hàm số trên khoảng (-1;1); với mọi x thì f(x) f(0) hay f(x) f(0)? * Nếu xét hàm số trên khoảng (1;3); ( với mọi x thì f(x)f(2) hay f(x) f(2)? - Từ đây, Gv thông tin điểm x = 0 là điểm cực tiểu, f(0) là giá trị cực tiểu và điểm x = 2 là gọi là điểm cực đại, f(2) là giá trị cực đại. - Gv cho học sinh hình thành khái niệm về cực đại và cực tiểu. - Gv treo bảng phụ 2 minh hoạ hình 1.1 trang 10 và diễn giảng cho học sinh hình dung điểm cực đại và cực tiểu. - Gv lưu ý thêm cho học sinh: Chú ý (sgk trang 11) - Trả lời : f(x) f(0) - Trả lời : f(2) f(x) - Học sinh lĩnh hội, ghi nhớ. - Định nghĩa: (sgk trang 10) Hoạt động 2: Điều kiện cần để hàm số có cực trị t Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng 12’ - Gv yêu cầu học sinh quan sát đồ thị hình 1.1 (bảng phụ 2) và dự đoán đặc điểm của tiếp tuyến tại các điểm cực trị * Hệ số góc của tiếp tuyến này bằng bao nhiêu? * Giá trị đạo hàm của hàm số tại đó bằng bao nhiêu? - Gv gợi ý để học sinh nêu định lý 1 và thông báo không cần chứng minh. - Gv nêu ví dụ minh hoạ: Hàm số f(x) = 3x3 + 6 , Đạo hàm của hàm số này bằng 0 tại x0 = 0. Tuy nhiên, hàm số này không đạt cực trị tại x0 = 0 vì: f’(x) = 9x2nên hàm số này đồng biến trên R. - Gv yêu cầu học sinh thảo luận theo nhóm để rút ra kết luận: Điều nguợc lại của định lý 1 là không đúng. - Gv chốt lại định lý 1: Mỗi điểm cực trị đều là điểm tới hạn (điều ngược lại không đúng). - Gv yêu cầu học sinh nghiên cứu và trả lời bài tập sau: Chứng minh hàm số y = không có đạo hàm. Hỏi hàm số có đạt cực trị tại điểm đó không? Gv treo bảng phụ 3 minh hoạ hinh 1.3 - Học sinh suy nghĩ và trả lời * Tiếp tuyến tại các điểm cực trị song song với trục hoành. * Hệ số góc của cac tiếp tuyến này bằng không. * Vì hệ số góc của tiếp tuyến bằng giá trị đạo hàm của hàm số nên giá trị đạo hàm của hàm số đó bằng không. - Học sinh tự rút ra định lý 1: - Học sinh thảo luận theo nhóm, rút ra kết luận: Điều ngược lại không đúng. Đạo hàm f’ có thể bằng 0 tại x0 nhưng hàm số f không đạt cực trị tại điểm x0. * Học sinh ghi kết luận: Hàm số có thể đạt cực trị tại điểm mà tại đó hàm số không có đạo hàm. Hàm số chỉ có thể đạt cực trị tại những điểm mà tại đó đạo hàm của hàm số bằng 0, hoặc tại đó hàm số không có đạo hàm. - Học sinh tiến hành giải. Kết quả: Hàm số y = đạt cực tiểu tại x = 0. Học sinh thảo luận theo nhóm và trả lời: hàm số này không có đạo hàm tại x = 0. - Định lý 1: (sgk trang 11) - Chú ý:( sgk trang 12) Hoạt động 3: Điều kiện đủ để hàm số có cực trị t Hoạt động của giáo viên Hoạt động của học sinh Ghi bảng 12’ - Gv treo lại bảng phụ 1, yêu cầu học sinh quan sát BBT và nhận xét dấu của y’: * Trong khoảng và , dấu của f’(x) như thế nào? * Trong khoảng và , dấu của f’(x) như thế nào? - Từ nhận xét này, Gv gợi ý để học sinh nêu nội dung định lý 2 - Gv chốt lại định lý 2: Nói cách khác: + Nếu f’(x) đổi dấu từ âm sang dương khi x qua điểm x0 thì hàm số đạt cực tiểu tại điểm x0. + Nếu f’(x) đổi dấu từ dương sang âm khi x qua điểm x0 thì hàm số đạt cực đại tại điểm x0. - Gv hướng dẫn và yêu cầu học sinh nghiên cứu hứng minh định lý 2. - Gv lưu ý thêm cho học sinh : Nếu f’(x) không đổi dấu khi đi qua x0 thì x0 không là điểm cực trị. - Treo bảng phụ 4 thể hiện định lý 2 được viết gọn trong hai bảng biến thiên: - Quan sát và trả lời. * Trong khoảng, f’(x) 0. * Trong khoảng , f’(x) >0 và trong khoảng , f’(x) < 0. - Học sinh tự rút ra định lý 2: - Học sinh ghi nhớ. - Học nghiên cứu chứng minh định lý 2 - Quan sát và ghi nhớ - Định lý 2: (sgk trang 12) 4/ Củng cố(2’) Điều kiện cần, điều kiện đủ để hàm số đạt cực trị 5/ hướng dẫn học và bài tập về nhà(1’): - Học thuộc các khái niệm, định lí - Giải các bài tập trong sách giáo khoa
Tài liệu đính kèm: