Dạy thêm Phương trình lượng giác

Dạy thêm Phương trình lượng giác

Một số điều cần chú ý:

 a/ Khi giải phương trình có chứa các hàm số tang, cotang, có mẫu số hoặc chứa căn bậc chẵn, thì nhất thiết phải đặt điều kiện để phương trình xác định.

 * Phương trình chứa tanx thì điều kiện:

 * Phương trình chứa cotx thì điều kiện:

 * Phương trình chứa cả tanx và cotx thì điều kiện

 

doc 8 trang Người đăng ngochoa2017 Lượt xem 1176Lượt tải 1 Download
Bạn đang xem tài liệu "Dạy thêm Phương trình lượng giác", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
II. PHƯƠNG TRÌNH LƯỢNG GIÁC 
I. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN
1.	Phương trình sinx = sinα
	a/	b/
	c/	d/
	e/ 	
Các trường hợp đặc biệt:
2.	Phương trình cosx = cosα
	a/	b/
	c/	d/
	e/	
Các trường hợp đặc biệt:
3.	Phương trình tanx = tanα
	a/	b/
	c/	d/ 
	e/ 	
Các trường hợp đặc biệt:
4.	Phương trình cotx = cotα
Các trường hợp đặc biệt:
5.	Một số điều cần chú ý:
	a/	Khi giải phương trình có chứa các hàm số tang, cotang, có mẫu số hoặc chứa căn bậc chẵn, thì nhất thiết phải đặt điều kiện để phương trình xác định.
	*	Phương trình chứa tanx thì điều kiện: 
	*	Phương trình chứa cotx thì điều kiện: 
	*	Phương trình chứa cả tanx và cotx thì điều kiện 
	*	Phương trình có mẫu số:
	·	·	
	·	·	
	b/	Khi tìm được nghiệm phải kiểm tra điều kiện. Ta thường dùng một trong các cách sau để kiểm tra điều kiện:
	1.	Kiểm tra trực tiếp bằng cách thay giá trị của x vào biểu thức điều kiện.
	2.	Dùng đường tròn lượng giác.
	3.	Giải các phương trình vô định.
Giải các phương trình: 
	1) 	2) 	3) 
	4) 	5) 	6) 
	7) 	8) 	9) 
	10) 	11) 	12) 
	13) 	14) 	15) cos(2x + 250) = 
Giải các phương trình: 
	1) 	2) 
	3) 	4) 
	5) 	6) 
	7) 	8) 
	9) 	10) 	
	11) 	12) 	
	13) 	14) 
	15) 	16) 	
II. PHƯƠNG TRÌNH BẬC HAI ĐỐI VỚI MỘT HÀM SỐ LƯỢNG GIÁC
Dạng
Đặt
Điều kiện
t = sinx
t = cosx
t = tanx
t = cotx
	Nếu đặt: 
Giải các phương trình sau:
	1) 2sin2x + 5cosx + 1 = 0 	2) 4sin2x – 4cosx – 1 = 0 
	3) 4cos5x.sinx – 4sin5x.cosx = sin24x 	4) 	
	5) 	6) 
	7) tan2x + cot2x = 2 	8) cot22x – 4cot2x + 3 = 0
Giải các phương trình sau:
	1) 4sin23x + = 4	2) cos2x + 9cosx + 5 = 0
	3) 4cos2(2 – 6x) + 16cos2(1 – 3x) = 13	4) 
	5) + tan2x = 9	6) 9 – 13cosx + = 0
	7) = cotx + 3	8) + 3cot2x = 5
	9) cos2x – 3cosx = 	10) 2cos2x + tanx = 
Cho phương trình . Tìm các nghiệm của phương trình thuộc.
Cho phương trình : cos5x.cosx = cos4x.cos2x + 3cos2x + 1. Tìm các nghiệm của phương trình thuộc .
Giải phương trình : .
III. PHƯƠNG TRÌNH BẬC NHẤT THEO SINX VÀ COSX
DẠNG: a sinx + b cosx = c (1)
Cách 1:
·	Chia hai vế phương trình cho ta được: 
(1) Û 
·	Đặt: 
	phương trình trở thành: 	
·	Điều kiện để phương trình có nghiệm là: 
·	(2) 
Cách 2: 
a/	Xét có là nghiệm hay không?
b/	Xét 
Đặt: ta được phương trình bậc hai theo t: 
	Vì nên (3) có nghiệm khi: 
	Giải (3), với mỗi nghiệm t0, ta có phương trình: 
	Ghi chú: 
	1/	Cách 2 thường dùng để giải và biện luận.
	2/	Cho dù cách 1 hay cách 2 thì điều kiện để phương trình có nghiệm: 
	3/	Bất đẳng thức B.C.S:
Giải các phương trình sau:
1) 	2) 	3) 
4) 	5) 
6) 
Giải các phương trình sau:
1) 	2) 
3) 	4) cosx – 
5) sin5x + cos5x = cos13x	6) (3cosx – 4sinx – 6)2 + 2 = – 3(3cosx – 4sinx – 6)
Giải các phương trình sau:
1) 3sinx – 2cosx = 2	2) cosx + 4sinx – = 0
3) cosx + 4sinx = –1	4) 2sinx – 5cosx = 5
Giải các phương trình sau:
1) 2sin + sin = 	2) 
Tìm m để phương trình : (m + 2)sinx + mcosx = 2 có nghiệm .
Tìm m để phương trình : (2m – 1)sinx + (m – 1)cosx = m – 3 vô nghiệm. 
IV. PHƯƠNG TRÌNH ĐẲNG CẤP BẬC HAI
DẠNG: a sin2x + b sinx.cosx + c cos2x = d (1)
Cách 1:
·	Kiểm tra cosx = 0 có thoả mãn hay không?
	Lưu ý: cosx = 0 
·	Khi , chia hai vế phương trình (1) cho ta được: 
·	Đặt: t = tanx, đưa về phương trình bậc hai theo t:
Cách 2: Dùng công thức hạ bậc
	 (đây là phương trình bậc nhất đối với sin2x và cos2x)
Giải các phương trình sau:
1) 
2) 
3) 
4) 
5) 
6) 
7) 
8) 
9) 
10) 
11) cos2x + 3sin2x + sinx.cosx – 1 = 0
12) 2cos2x – 3sinx.cosx + sin2x = 0
Giải các phương trình sau:
1) sin3x + 2sin2x.cos2x – 3cos3x = 0	2) 
Tìm m để phương trình : (m + 1)sin2x – sin2x + 2cos2x = 1 có nghiệm.
Tìm m để phương trình : (3m – 2)sin2x – (5m – 2)sin2x + 3(2m + 1)cos2x = 0 vô 	nghiệm .
V. PHƯƠNG TRÌNH ĐỐI XỨNG
Dạng 1: a.(sinx ± cosx) + b.sinx.cosx + c = 0
·	Đặt: 
·	Thay vào phương trình đã cho, ta được phương trình bậc hai theo t. Giải phương trình này tìm t thỏa Suy ra x.
Lưu ý dấu:
·	
·	 
Dạng 2: a.|sinx ± cosx| + b.sinx.cosx + c = 0
·	Đặt: 
·	Tương tự dạng trên. Khi tìm x cần lưu ý phương trình chứa dấu giá trị tuyệt đối.
Giải các phương trình:
	1) 	2) 
	3) 	4) 
	5) 	sinx + cosx – 4sinx.cosx – 1 = 0	6) 
Giải các phương trình:
	1) 	2) 5sin2x – 12(sinx – cosx) + 12 = 0
	3) 	4) cosx – sinx + 3sin2x – 1 = 0
	5) sin2x + 	
	6) 
Giải các phương trình:
	1) sin3x + cos3x = 1 + sinx.cosx	2) 2sin2x – 
VI. PHƯƠNG TRÌNH DẠNG KHÁC
Giải các phương trình sau:
	1) sin2x = sin23x	2) sin2x + sin22x + sin23x = 
	3) cos2x + cos22x + cos23x = 1	4) cos2x + cos22x + cos23x + cos24x = 
Giải các phương trình sau:
	1) sin6x + cos6x = 	2) sin8x + cos8x = 
	3) cos4x + 2sin6x = cos2x	4) sin4x + cos4x – cos2x + – 1 = 0
Giải các phương trình sau:
	1) 1 + 2sinx.cosx = sinx + 2cosx	2) sinx(sinx – cosx) – 1 = 0
	3) sin3x + cos3x = cos2x	4) sin2x = 1 + cosx + cos2x
	5) sinx(1 + cosx) = 1 + cosx + cos2x	6) (2sinx – 1)(2cos2x + 2sinx + 1) = 3 – 4cos2x
	7) (sinx – sin2x)(sinx + sin2x) = sin23x	
	8) sinx + sin2x + sin3x = (cosx + cos2x + cos3x)
Giải các phương trình sau:
	1) 2cosx.cos2x = 1 + cos2x + cos3x	2) 2sinx.cos2x + 1 + 2cos2x + sinx = 0
	3) 3cosx + cos2x – cos3x + 1 = 2sinx.sin2x
	4) cos5x.cosx = cos4x.cos2x + 3cos2x + 1
Giải các phương trình sau:
	1) sinx + sin3x + sin5x = 0	2) cos7x + sin8x = cos3x – sin2x
	3) cos2x – cos8x + cos6x = 1	4) sin7x + cos22x = sin22x + sinx
Giải các phương trình sau:
	1) sin3x + cos3x + = cosx + sin3x
	2) 1 + sin2x + 2cos3x(sinx + cosx) = 2sinx + 2cos3x + cos2x

Tài liệu đính kèm:

  • docluong giac day them.doc