1. Về kiến thức:
- Hiểu được ĐN căn bậc hai của số phức;
- Biết cách đưa việc tìm căn bậc hai của số phức về việc giải một hệ phương trình hai ẩn thực;
- Biết cách giải một phương trình bậc hai.
2. Về kỷ năng:
- Tìm được căn bậc hai của số phức;
- Giải được PTB2 với hệ số phức;
3. Về tư duy thái độ:
- Có tư duy logic;
- Có tính độc lập và hợp tác trong giờ học.
Tiết:75-76 Ngày soạn: .. . . . . . . . . . § 2 CĂN BẬC HAI CỦA SỐ PHỨC VÀ PHƯƠNG TRÌNH BẬC HAI I. MỤC TIÊU: Về kiến thức: Hiểu được ĐN căn bậc hai của số phức; Biết cách đưa việc tìm căn bậc hai của số phức về việc giải một hệ phương trình hai ẩn thực; Biết cách giải một phương trình bậc hai. Về kỷ năng: Tìm được căn bậc hai của số phức; Giải được PTB2 với hệ số phức; Về tư duy thái độ: Có tư duy logic; Có tính độc lập và hợp tác trong giờ học. II. CHUẨN BỊ CỦA THẦY VÀ TRÒ: Chuẩn bị của thầy : Giáo án; SGK;.... Chuẩn bị của trò: Chuẩn bị trước ở nhà phần bài học và các hoạt động trong sách giáo khoa.. III. PHƯƠNG PHÁP DẠY HỌC: Sử dụng lồng ghép các phương pháp một cách linh hoạt trong bài dạy như: gợi mở vấn đề, thuyết trình, vấn đáp, ...; trong đó gợi mở vấn đề giữ vai trò chủ đạo trong giờ học IV. TIẾN TRÌNH BÀI HỌC: Ổn định tổ chức: kiểm tra sỉ số, Kiểm tra bài cũ : Câu hỏi: Trình bày các định nghĩa: Số phức, hai số phức bằng nhau, số phức liên hợp. Bài tập: Tính với Bài mới: Tiết 75 HĐ1: ĐN căn bậc hai của số phức HĐ CỦA GV HĐ CỦA HS GHI BẢNG + GV: Đọc ĐN căn bậc hai của số phức. + Dựa vào ĐN, hãy tìm căn bậc hai của số thực w với w bằng 0; 9; -4. + GV cho HS nhận xét các VD trên và từ đó khái quát hoá cho số thực . + GV cần định hướng HS để giải quyết vấn đề trên. * Với Xét phương trình . * Với . Hãy xét phương trình . + GV nhận xét đánh giá chung và ghi bảng. + GV: Cho HS nhận xét VD1 + GV: Đối với trường hợp w là số phức thì sao? Việc tìm că bậc hai của nó như thế nào? + Hs nghe đọc ĐN, đọc lại ĐN , tiếp thu và ghi nhớ. + Căn bậc hai của 0 là 0; Căn bậc hai của 9 là 3 và -3; Căn bậc hai của -4 là 2i và -2i; + HS thảo luận theo từng bàn, nhóm.Từ đó khái quát hoá cho trường hợp số thực . * Với số thực .ta có Như vậy z có hai căn bậc hai là * Với số thực .ta có Như vậy z có hai căn bậc hai là + HS đọc Vd và sau đó trả lời. + HS nhận thức vấn đề cần nghiên cứu. 1. Căn bậc hai của số phức: ĐN: (SGK tr192) a) Trường hợp w là số thực: HĐ2: Tìm hiểu căn bậc hai của số phức HĐ CỦA GV HĐ CỦA HS GHI BẢNG + GV: giả sử trong đó x, y là số thực. + GV: z là căn bậc hai của w khi nào? Hày tìm mối liên hệ giữa x;y với a;b. + Như vậy, theo ĐN mỗi cặp (x;y) nghiệm đúng của HPT (*) cho ta một căn bậc hai x+yi của số phức . GV: Nhận xét , chỉnh sửa, kết luận vấn đề và ghi bảng. + z là căn bậc hai của w khi và chỉ khi + HS hiểu cách tìm căn bậc hai của số phức sau khi GV đã kết luận và ghi bảng. a) Trường hợp w là số phức với HĐ3: Xét VD 2 và phần ghi nhớ HĐ CỦA GV HĐ CỦA HS GHI BẢNG + GV: gọi 1 HS nhắc lại cách tìm căn bậc hai của số phức + GV: gọi 1HS làm VD2 SGK + GV: Cho HS nhận xét bài làm trên bảng ; sau đó kết luận. + GV: Cho HS đọc VD2 câu b tr193 + GV: Cho HS thảo luận nhóm bài 17 SGK tr195 và sau đó kết luận bài toán. + GV ghi phần tổng quát ở SGK tr194 + Hs nghiên cứu VD và làm theo định hướng của GV. + Gọi là căn bậc hai của số phức khi đó ta có: Hệ có hai nghiệm (2;3), (-2;-3) Vậy , hệ có hai căn bậc hai của -5+12i là 2+3i và -2-3i + Hs đọc sách VD2: SKG tr193 a) Tìm căn bậc hai của số phức w = -5+12i b) Tìm căn bậc hai của số i. Củng cố toàn bài: GV nhắc lại cách tìm căn bậc hai của số phức. Yêu cầu HS hoàn thành bài 17;18 sgk tr195,196 Đọc phần 2 của bài này. Ruùt kinh nghieäm . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . Tiết 76 Ổn định tổ chức: kiểm tra sỉ số, Kiểm tra bài cũ : Câu hỏi: Trình bày các định nghĩa: Số phức, hai số phức bằng nhau, số phức liên hợp. Bài tập: Tính với Bài mới: HĐ1: Nghiên cứu cách giải PTB2 HĐ CỦA GV HĐ CỦA HS GHI BẢNG + GV: Cho HS nghiên cứu cách giải PTB2 ẩn phức ở SGK + GV: PTB2 ẩn phức có nghiệm khi nào? + GV: nhận xét các cách trả lời của HS . Từ đó kết luận chung và ghi bảng. + HS nhận nhiệm vụ và làm việc theo định hướng của GV. + PTB2 ẩn phức luôn có hai nghiệm (có thể trùng nhau) 2. Phương trình bậc hai: (SGK tr193) HĐ2: Rèn luyện kỹ năng giải PTB2 HĐ CỦA GV HĐ CỦA HS GHI BẢNG + GV: Cho 1 HS nêu lại các bước giải PTB2 + Áp dụng các bước giải này, hãy GPT: + Lập biệt thức delta + Hãy viết công thức nghiệm + GV nhận xét chỉnh sửa + GV: Cho HS tìm hiểu VD3b + HS trả lời. + + VD3: a). GPT: b) GPT: HĐ3: Hướng dẫn HS xét H2 ở SGK HĐ CỦA GV HĐ CỦA HS GHI BẢNG + GV: Tính + Tìm số liên hợp của a+bi + Nếu thì Pt có nghiệm như thế nào? + Hãy tìm . + Nếu thì PT có nghiệm thế nào? + Nếu + GV: Kết luận chung + GV: Ta đã biết PTB2 có hai nghiệm phức . Từ đó khái quát hóa cho phương tình + + a-bi + + + HS sử dụng số liên hợp đpcm + + Tiếp thu và chấp nhận kết quả này. VD4: Cho PT . Với A,B,C là các số thực và A khác 0. Chứng mnh rằng C là 1 nghiệm của PT thì cũng là 1 nghiệm của phương trình. Củng cố toàn bài: Về kiến thức: Nắm cách tìm căn bậc hai của số phức và các tiến hành giải PTB2 Dặn dò: Học thuộc ĐN, Đlí Giải Bt SGK Giải thêm các bài tập:Giải PT Ruùt kinh nghieäm . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .
Tài liệu đính kèm: