Giáo án Giải tích 12 học kì 1 - Trường THPT Lê Trung Đình

Giáo án Giải tích 12 học kì 1 - Trường THPT Lê Trung Đình

Bài 1:

SỰ ĐỒNG BIẾN VÀ NGHỊCH BIẾN CỦA HÀM SỐ

 I . Mục tiêu:

1. Về kiến thức: Học sinh nắm được khái niệm đồng biến, nghịch biến, tính đơn điệu của đạo hàm, quy tắc xét tính đơn điệu của hàm số.

2. Về kĩ năng: HS biết cách xét dấu một nhị thức, tam thức, biết nhận xét khi nào hàm số đồng biến, nghịch biến, biết vận dụng quy tắc xét tính đơn điệu của hàm số vào giải một số bài toán đơn giản.

3. Về tư duy: Biết qui lạ về quen, tư duy các vấn đề của toán học một cách logic và hệ thống, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ.

4. Về thái độ: Cẩn thận chính xác trong lập luận , tính toán và trong vẽ hình. Tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv, năng động, sáng tạo trong quá trình tiếp cận tri thức mới, thấy được lợi ích của toán học trong đời sống, từ đó hình thành niềm say mê khoa học, và có những đóng góp sau này cho xã hội.

 

doc 87 trang Người đăng ngochoa2017 Lượt xem 980Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án Giải tích 12 học kì 1 - Trường THPT Lê Trung Đình", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tiết : 	1 + 2	
Ngày soạn :	Ngày dạy:
Bài 1: 
SỰ ĐỒNG BIẾN VÀ NGHỊCH BIẾN CỦA HÀM SỐ
	I . Mục tiêu:
1. Về kiến thức: Học sinh nắm được khái niệm đồng biến, nghịch biến, tính đơn điệu của đạo hàm, quy tắc xét tính đơn điệu của hàm số.
2. Về kĩ năng: HS biết cách xét dấu một nhị thức, tam thức, biết nhận xét khi nào hàm số đồng biến, nghịch biến, biết vận dụng quy tắc xét tính đơn điệu của hàm số vào giải một số bài toán đơn giản.
3. Về tư duy: Biết qui lạ về quen, tư duy các vấn đề của toán học một cách logic và hệ thống, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ.
4. Về thái độ: Cẩn thận chính xác trong lập luận , tính toán và trong vẽ hình. Tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv, năng động, sáng tạo trong quá trình tiếp cận tri thức mới, thấy được lợi ích của toán học trong đời sống, từ đó hình thành niềm say mê khoa học, và có những đóng góp sau này cho xã hội.
	II. Phương pháp:
1. Phương pháp: Thuyết trình, gợi mở, vấn đáp, nêu vấn đề
2. Công tác chuẩn bị: 
- Giáo viên: giáo án, sgk, thước kẻ, phấn, 
- Học sinh: Sgk, vở ghi, dụng cụ học tập, 
III. Tiến trình bài học:
NỘI DUNG
HOẠT DỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
I.Tính đơn diệu của hàm số
 1. Nhắc lại định nghĩa
-Hàm số y = f(x) đồng biến (tăng) trên K nếu với mọi cặp số x1, x2 thuộc K mà : x1 f(x1) < f(x2)
-Hàm số y = f(x) nghịch biến biến (tăng) trên K nếu với mọi cặp số x1, x2 thuộc K mà : x1 f(x1) > f(x2)
Hàm số đồng biến hoặc nghịch biến trên K đ ược gọi chung là hàm số đơn điệu trên K
nhËn xÐt:
+ Hµm f(x) ®ång biÕn trªn K Û 
tØ sè biÕn thiªn: 
+ Hµm f(x) nghÞch biÕn trªn K Û 
tØ sè biÕn thiªn: + Nếu hàm số đồng biến trên K thì đồ thị haøm soá ñi leân töø traùi sang phaûi
+Nếu hàm số ngḥich biến trên K thì đồ thị haøm soá ñi xuoáng töø traùi sang phaûi
 2. Tính ñôn ñieäu vaø daáu cuûa ñaïo haøm
Định lý: Cho hàm số y = f(x) có đạo hàm trên K
 a/ Nếu f’(x) > 0 thì hàm số f(x) đồng biến trên K.
 b/ Nếu f’(x) < 0 thì hàm số f(x) nghịch biến trên K.
Tóm lại, trên K:
Chú ý: N ếu f’(x) = 0, thì f(x) không đổi trên K.
Ví dụ 1: Tìm các khoảng đơn điệu của hàm số:
 a/ y = 2x2 + 1 b/ y = sinx trên (0;2)
Chú ý: Ta có định lý mở rộng sau đây:
Giả sử hàm số y = f(x) có đạo hàm trên K. Nếu f’(x)0(f’(x)0), và f’(x) = 0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến(nghịch biến) trên K.
Ví dụ 2: Tìm các khoảng đơn điệu của hàm số: y = 2x3 + 6x2 +6x – 7
TX Đ: D = R
Ta có: y’ = 6x2 +12x+ 6 =6(x+1)2
Do đ ó y’ = 0x = -1 v à y’>0 Theo định lý mở rộng, hàm số đã cho luôn luôn đồng biến
II. Qui tắc xét tính đơn điệu của hàm số
Qui tắc:
 -Tìm tập xác định
 -Tính đạo hàm f’(x). Tìm các điểm tới hạn xi (I = 1, 2, ,n) mà tại đó đạo hàm bằng 0 hoặc không xác định.
 - Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên
 - Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.
 2. Áp dụng: 
Ví dụ 3: Xét tính đồng biến và nghịch biến cuả hàm số: y =x3 -x2 -2x + 2
Ví dụ 4: Tìm các khoảng đơn điệu của hàm số: y = 
Ví dụ 5: Chứng minh rằng x> sinx trên khoảng (0; ) bằng cách xét dấu khoảng đơn điệu của hàm số f(x) = x – sinx
 Giải: 
Xét hàm số f(x) = x – sinx (), ta có: f’(x) = 1 – cosx 0 ( f’(x) = 0 chỉ tại x = 0) nên theo chú ý trên ta có f(x) đồng biến trên nữa khoảng [0; ).Do đó, với 0 f(0)=0 hay x> sinx trên khoảng (0; )
Ho¹t ®éng 1: Yêu cầu HS
- Nªu l¹i ®Þnh nghÜa vÒ sù ®¬n ®iÖu cña hµm sè trªn mét kho¶ng K (K Í R) ?
- Tõ ®å thÞ ( H×nh 1) trang 4 (SGK) h·y chØ râ c¸c kho¶ng ®¬n ®iÖu cña hµm sè y = cosx trªn 
- Uèn n¾n c¸ch biÓu ®¹t cho häc sinh.
- Chó ý cho häc sinh phÇn nhËn xÐt:
Ho¹t ®éng 2: Cho c¸c hµm sè sau y =
Yêu cầu HS xét đồ thị của nó, sau đó xét dấu đạo hàm của hs. Từ đó nêu nhận xét về mối quan hệ giữa sự đồng biến, nghịch biến của hàm số và dấu của đạo hàm. 
-Gợi ý cho HS làm ví dụ
Hoạt động 3:Khẳng định ngược lại với định lý trên đúng không?
-Nêu chú ý:
- Nêu qui tắc xét tính đơn điệu
Gợi ý cho HS làm ví dụ:
GV làm ví dụ 5
- Nªu l¹i ®Þnh nghÜa vÒ sù ®¬n ®iÖu cña hµm sè trªn mét kho¶ng K (K Í R).
- Nãi ®­îc: Hµm y = cosx ®¬n ®iÖu t¨ng trªn tõng kho¶ng ; , ®¬n ®iÖu gi¶m trªn 
HS suy nghĩ nêu nhận xét
HS suy nghĩ l àm ví dụ
- Theo dõi và ghi chép
Hs thảo luận nhóm để giải quyết vấn đề mà Gv đã đưa ra.
+ Tính đạo hàm.
+ Xét dấu đạo hàm
+ Kết luận.
 Củng cố: Củng cố lại các kiến thức học trong bài
 Bài tập: Bài 1, 2 ,3 , 4, 5, 6, 7 trang 28, 29 sgk
Tiết : 	3	
Ngày soạn :	Ngày dạy:
LUYỆN TẬP SỰ ĐỒNG BIẾN VÀ NGHỊCH BIẾN CỦA HÀM SỐ
	I . Mục tiêu:
1. Về kiến thức: Học sinh nắm được khái niệm đồng biến, nghịch biến, tính đơn điệu của đạo hàm, quy tắc xét tính đơn điệu của hàm số.
2. Về kĩ năng: HS biết cách xét dấu một nhị thức, tam thức, biết nhận xét khi nào hàm số đồng biến, nghịch biến, biết vận dụng quy tắc xét tính đơn điệu của hàm số vào giải một số bài toán đơn giản.
3. Về tư duy: Biết qui lạ về quen, tư duy các vấn đề của toán học một cách logic và hệ thống, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ.
4. Về thái độ: Cẩn thận chính xác trong lập luận , tính toán và trong vẽ hình. Tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv.
	II. Phương pháp:
1. Phương pháp: Thuyết trình, gợi mở, vấn đáp, nêu vấn đề
2. Công tác chuẩn bị: 
- Giáo viên: giáo án, sgk, thước kẻ, phấn, 
- Học sinh: Sgk, vở ghi, dụng cụ học tập, 
III. Tiến trình bài học:
 1. Kiêm tra bài cũ: 
Nêu qui tắc xét tính đơn điệu của hàm số?
 2. Bài mới:
NỘI DUNG
HOẠT DỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
Bài 1: Xét sự đồng biến và nghịch biến của hàm số 
 a/ y = 4 + 3x – x2
 b/ y = 1/3x3 +3x2 – 7x – 2
 c/ y = x4 -2x2 + 3
 d/ y= -x3 +x2 -5
Bài 2: Tìm các khoảng đơn điệu của các hàm số:
a/ y = b/ y =
c/ y = d/ y=
Bài 3: Chứng minh rằng hàm số y = đồng biến trên khoảng (-1;1); nghịch biến trên các khoảng (;-1) và (1; )
Bài 4: Chứng minh hàm số y =đồng biến trên khoảng (0;1) và nghịch biến trên khoảng (1; 2)
Bài 5: Chứng minh các bất đẳng thức sau:
a/ tanx > x (0<x<)
b/ tanx > x +(0<x<)
 - Yêu cầu HS nêu lại qui tắc xét tính đơn điệu của hàm số , sau đó áp dụng vào làm bài tập
- Cho HS lên bảng trình bày sau đó GV nhận xét
- Cho HS lên bảng trình bày sau đó GV nhận xét
c/ Yêu cầu HS:
 -tìm TXĐ
 - Tính y’
 - Xét dấu y’, rồi kết luận
- Cho HS lên bảng trình bày sau đó GV nhận xét
- Cho HS lên bảng trình bày sau đó GV nhận xét
GV gợi ý: 
Xét hàm số : y = tanx-x 
y’ =?
-Kết luận tính đơn điệu của hàm số với mọi x thoả 0<x<
- HS nêu qui tắc và áp dụng làm bài tập
a/ TXĐ: D = R
y’ = 3-2x, y’ = 0 x = 3/2
x
 3/2 
y’
 + 0 -
y
 25/4
Hàm số đồng biến trên khoảng , nghịch biến trên 
2/Đáp án
a/ Hàm số đồng biến trên các khoảng 
b/Hàm số nghịch biến trên các khoảng 
HS suy nghĩ làm bài
HS suy nghĩ làm bài
HS theo dõi GV gợi ý và chứng minh
Củng cố: Củng cố lại các kiến thức đã học trong bài.
Tiết : 	4 + 5	
Ngày soạn :	Ngày dạy:
Bài 2: 
CỰC TRỊ CỦA HÀM SỐ
	I . Mục tiêu:
1. Về kiến thức: Học sinh nắm được : khái niệm cực đại, cực tiểu. Điều kiện đủ để hàm số có cực trị. 
 Quy tắc tìm cực trị của hàm số.
2. Về kĩ năng: HS biết cách xét dấu một nhị thức, tam thức, biết nhận xét khi nào hàm số đồng biến, nghịch biến, biết vận dụng quy tắc tìm cực trị của hàm số vào giải một số bài toán đơn giản.
3. Về tư duy: Biết qui lạ về quen, tư duy các vấn đề của toán học một cách logic và hệ thống.
4. Về thái độ: Cẩn thận chính xác trong lập luận , tính toán và trong vẽ hình.
	II. Phương pháp:
1. Phương pháp: Thuyết trình, gợi mở, vấn đáp, nêu vấn đề.
2. Công tác chuẩn bị: 
- Giáo viên: giáo án, sgk, thước kẻ, phấn, 
- Học sinh: Sgk, vở ghi, dụng cụ học tập, 
III. Tiến trình bài học:
 1. Kiêm tra bài cũ: 
Nêu qui tắc xét tính đơn điệu của hàm số?
 2. Bài mới:
NỘI DUNG
HOẠT DỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
Khái niệm cực đại, cực tiểu.
 Định nghĩa:
Cho hµm sè y = f(x) liªn tôc trªn (a; b) (có thể a là - ¥; b là +¥) vµ ®iÓm x0 Î (a; b).
a/ Nếu tồn tại số h > 0 sao cho 
f(x) < f(x0), x ¹ x0.và với mọi x Î (x0 – h; x0 + h) thì ta nãi hµm sè ®¹t cùc ®¹i t¹i x0. 
B Nếu tồn tại số h > 0 sao cho 
f(x) > f(x0), x ¹ x0.và với mọi x Î (x0 – h; x0 + h) thì ta nãi hµm sè ®¹t cùc tiểu t¹i x0.
Ta nãi hµm sè ®¹t cùc tiÓu t¹i ®iÓm x0, f(x0) gäi lµ gi¸ trÞ cùc tiÓu cña hµm sè, ®iÓm (x0; f(x0)) gäi lµ ®iÓm cùc tiÓu cña ®å thÞ hµm sè.
Chú ý:
1. Nếu hàm số đạt cực đại (cực tiểu) tại x0 thì x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f(x0) gäi lµ gi¸ trÞ cùc ®¹i (gi¸ trÞ cùc tiểu) cña hµm sè, ®iÓm M(x0;f(x0)) gäi lµ ®iÓm cùc ®¹i (®iÓm cùc tiểu)cña ®å thÞ hµm sè.
2. C¸c ®iÓm cùc ®¹i vµ cùc tiÓu gäi chung lµ ®iÓm cùc trÞ, gi¸ trÞ cña hµm sè t¹i ®ã gäi lµ gi¸ trÞ cùc trÞ.
3. Nếu hàm số y = f(x) có đạo hàm trên khoảng (a ; b) và đạt cực đại hoặc cực tiểu tại x0 thì f’(x0) = 0.
Điều kiện đủ để hàm số có cực trị.
Định lý:
Giả sử hàm số y = f(x) liên tục trên khoảng K = (x0 – h; x0 + h) và có đạo hàm trên K hoặc trên K \ {x0}, với h > 0.
+ Nõu th× x0 lµ mét ®iÓm cùc ®¹i cña hµm sè y = f(x).
+ Nõu th× x0 lµ mét ®iÓm cùc tiÓu cña hµm sè y = f(x).
III. Quy tắc tìm cực trị.
Quy tắc I:
 + Tìm tập xác định.
 + Tính f’(x). Tìm các điểm tại đó f’(x) bằng không hoặc không xác định.
 + Lập bảng biến thiên.
 + Từ bảng biến thiên suy ra các điểm cực trị.
Quy tắc II:
 Ta thừa nhận định lý sau:
 Gi¶ sö hµm sè y = f(x) cã ®¹o hµm cÊp hai trong khoảng K = (x0 – h; x0 + h), với h > 0. Khi đó:
+ Nõu f’(x) = 0, f’’(x0) > 0 th× x0 lµ ®iÓm cùc tiÓu.
+ Nõu f’(x) = 0, f’’(x0) < 0 th× x0 lµ ®iÓm cùc ®¹i.
Ta có quy tắc II :
 + Tìm tập xác định.
 + Tính f’(x). Giải pt f’(x) = 0. Ký hiệu xi (i = 1, 2) là các nghiệm của nó (nếu có)
 + Tính f’’(x) và f’’(xi)
 + Dựa vào dấu của f’’(x) suy ra tính chất cực trị của điểm xi.
Hoạt động 1 :
 Cho hàm số : y = - x2 + 1 xác định trên khoảng (- ¥ ; + ¥) và y = (x – 3)2 xác định trên các khoảng ( ;) và ( ; 4)
 Yêu cầu Hs dựa vào đồ thị (H7, H8, SGK, trang 13) hãy chỉ ra các điểm mà tại đó mỗi hàm số đã cho có giá trị lớn nhất (nhỏ nhất).
 Qua hoạt động trên, Gv giới thiệu với Hs định nghĩa sau :
Hoạt động 2 :
 Yêu cầu Hs tìm các điểm cực trị của các hàm số sau : y = x4 – x3 + 3 và 
y = . 
 Hoạt động 3 :	
 Yêu cầu Hs :
a/ Sử dụng đồ thị để xét xem các hàm số sau đây có cực trị hay không : y = - 2x + 1 ; và 
y = (x – 3)2. 
b/ Từ đó hãy nêu lên mối liên hệ giữa sự tồn tại của cực trị và dấu của đạo hàm.
 Gv giới thiệu Hs nội dung định lý sau :
Gv giới thiệu Vd1, 2, 3, SGK, trang 15, 16) để Hs hiểu được định lý vừa nêu.
 Hoạt động 4 :
 Yêu cầu Hs tìm cực trị của các hàm số : 
y = - 2x3 + 3x2 + 12x – 5 ; y = x4 – x3 + 3.
Gv nêu qui tẮc tìm cực trị
 Hoạt động 5 : Dựa và quy tắc I :
 Yêu cầu Hs tìm cực trị của các hàm số sau :
y = x3 – 3x2 + 2 ; 
Gv giới thiệu Vd 4, 5, SGK, trang 17) để Hs hiểu được quy tắc vừa nêu.
HS suy nghĩ trả lời
Theo dõi và chép bài
Suy nghĩ và làm bài
Theo dõi và ghi bài
suy nghĩ và làm bài
Theo dõi và ghi bài
suy nghĩ và làm bài
Củng cố: Củng cố lại các kiến thức đã học trong bài.
Bài tập: Bài tập sgk.
Tiết : 	6 + 7	 ... , phấn, 
- Học sinh: Sgk, vở ghi, dụng cụ học tập, 
III. Tiến trình bài học:
 1. Kiêm tra bài cũ: 
1/ Nêu tính đơn điệu hàm số mũ y = ax ( a> 0, a) và vẽ đồ thị hàm số y = 2x 
2/ Nêu tính đơn điệu hàm số y = loga x ( a.>0, a, x>0 ) và tìm tập xác định của hàm số y = log2 (x2 -1)
2. Bài mới:
Tiết1: Bất phương trình mũ 
HĐ1: Nắm được cách giải bpt mũ cơ bản
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
NỘI DUNG
-Gọi học sinh nêu dạng pt mũ cơ bản đã học
- Gợi cho HS thấy dạng bpt mũ cơ bản (thay dấu = bởi dấu bđt)
-Dùng bảng phụ về đồ thị hàm số y = ax và đt y = b(b>0,b)
H1: hãy nhận xét sự tương giao 2 đồ thị trên
* Xét dạng: ax > b
H2: khi nào thì x> loga b và 
 x < loga b
- Chia 2 trường hợp:
a>1 , 0<a 
GV hình thành cách giải trên bảng
-1 HS nêu dạng pt mũ
+ HS theo dõi và trả lời:
b>0 :luôn có giao điểm
b: không có giaođiểm
-HS suy nghĩ trả lời
-Hs trả lời tập nghiệm
I/Bất phương trình mũ :
1/ Bất phương trình mũ cơ bản:
(SGK)
HĐ2: ví dụ minh hoạ
Hoạt động nhóm:
Nhóm 1 và 2 giải a
Nhóm 3 và 4 giảib
-Gv: gọi đại diện nhóm 1và 3 trình bày trên bảng
Nhóm còn lại nhận xét
GV: nhận xét và hoàn thiện bài giải trên bảng
* H3:em nào có thể giải được bpt 2x < 16
Các nhóm cùng giải
-đại diện nhóm trình bày, nhóm còn lại nhận xét bài giải
HS suy nghĩ và trả lời
Ví dụ: giải bpt sau:
a/ 2x > 16
b/ (0,5)x 
HĐ3:củng cố phần 1
Dùng bảng phụ:yêu cầu HS điền vào bảng tập nghiệm bpt:
a x < b, ax , ax 
GV hoàn thiện trên bảng phụ và cho học sinh chép vào vở
-đại diện học sinh lên bảng trả lời
-học sinh còn lại nhận xét và bổ sung
HĐ4: Giải bpt mũ đơn giản
GV: Nêu một số pt mũ đã học,từ đó nêu giải bpt
-cho Hs nhận xét vp và đưa vế phải về dạng luỹ thừa
-Gợi ý HS sử dụng tính đồng biến hàm số mũ
 -Gọi HS giải trên bảng
GV gọi hS nhận xét và hoàn thiện bài giải
GV hướng dẫn HS giải bằng cách đặt ẩn phụ
Gọi HS giải trên bảng
GV yêu cầu HS nhận xét sau đó hoàn thiện bài giải của VD2
-trả lời đặt t =3x 
 1HS giải trên bảng
-HScòn lại theo dõi và nhận xét
2/ giải bptmũđơn giản 
VD1:giải bpt (1)
Giải:
(1)
VD2: giải bpt:
9x + 6.3x – 7 > 0 (2)
 Giải:
Đặt t = 3x , t > 0
Khi đó bpt trở thành
t 2 + 6t -7 > 0 (t> 0)
Tiết số 2: Bất phương trình logarit
 HĐ6:Cách giải bất phương trình logarit cơ bản 
HOẠT ĐỘNG CỦA GV
HOẠT ĐỘNG CỦA HS
NỘI DUNG
GV :- Gọi HS nêu tính đơn điệu hàm số logarit
-Gọi HS nêu dạng pt logarit cơ bản,từ đó GV hình thành dạng bpt logarit cơ bản
GV: dùng bảng phụ( vẽ đồ thị hàm số y = loga x và y =b)
Hỏi: Tìm b để đt y = b không cắt đồ thị
GV:Xét dạng: loga x > b 
( )
Hỏi:Khi nào x > loga b, x<loga b 
GV: Xét a>1, 0 <a <1
-Nêu được tính đơn điệu hàm số logarit
y = loga x
- cho ví dụ về bpt loga rit cơ bản
-Trả lời : không có b
-Suy nghĩ trả lời
I/ Bất phương trình logarit:
1/ Bất phương trìnhlogarit cơ bản:
Dạng; (SGK)
Loga x > b
+ a > 1 , S =( ab ;+
 +0<a <1, S=(0; ab )
HĐ7: Ví dụ minh hoạ
Sử dụng phiếu học tập 1 và2
GV : Gọi đại diện nhóm trình bày trên bảng
GV: Gọi nhóm còn lại nhận xét 
GV: Đánh giá bài giải và hoàn thiện bài giải trên bảng
Hỏi: Tìm tập nghiệm bpt:
Log3 x < 4, Log0,5 x 
Cũng cố phần 1:
GV:Yêu cầu HS điền trên bảng phụ tập nghiệm bpt dạng: loga x , loga x < b
loga x 
GV: hoàn thiện trên bảng phụ
HĐ 8 :Giải bpt loga rit đơn giản
Trả lời tên phiều học tập theo nhóm
-Đại diện nhóm trình bày
- Nhận xét bài giải
-suy nghĩ trả lời
- điền trên bảng phụ, HS còn lại nhận xét
 Ví dụ: Giải bất phương trình:
a/ Log 3 x > 4
b/ Log 0,5 x 
-Nêu ví dụ 1
-Hình thành phương pháp giải dạng :loga f(x)< loga g(x)(1)
+Đk của bpt
+xét trường hợp cơ số
Hỏi:bpt trên tương đương hệ nào?
- Nhận xét hệ có được
GV:hoàn thiện hệ có được:
Th1: a.> 1 ( ghi bảng)
Th2: 0<a<1(ghi bảng)
GV -:Gọi 1 HS trình bày bảng
 - Gọi HS nhận xét và bổ sung
GV: hoàn thiện bài giải trên bảng
GV:Nêu ví dụ 2
-Gọi HS cách giải bài toán
-Gọi HS giải trên bảng
 GV : Gọi HS nhận xét và hoàn thiệnbài giải
- nêu f(x)>0, g(x)>0 và 
-suy nghĩ và trả lời
- ! hs trình bày bảng
-HS khác nhận xét
-Trả lời dùng ẩn phụ
-Giải trên bảng
-HS nhận xét
2/ Giải bất phương trình:
a/Log0,2(5x +10) < log0,2 (x2 + 6x +8 ) (2)
Giải:
(2)
Ví dụ2: Giải bất phương trình:
Log32 x +5Log 3 x -6 < 0(*)
Giải:
Đặt t = Log3 x (x >0 )
Khi đó (*)t2 +5t – 6 < 0
-6< t < 1 <-6<Log3 x <1 3-6 < x < 3
Củng cố: Ôn tập lại những kiến thức đã học.
Bài tập TN:
Bài 1:Tập nghiệm bpt: Log2 ( 2x -1 )Log2 (3 – x )
A B C D 
Bài2 ;Tập nghiệm bpt: Log0,1 (x – 1) < 0
A : R B: C: D:Tập rỗng
 Dặn dò: Về nhà làm bài tập 1và 2 trang 89, 90
Tiết : 	43
Ngày soạn :	Ngày dạy:
BÀI TẬP
BẤT PHƯƠNG TRÌNH SỐ MŨ VÀ
BẤT PHƯƠNG TRÌNH LÔGA-RÍT
	I . Mục tiêu:
1. Về kiến thức: 
Nắm vững phương pháp giải bpt mũ,bpt logarit và vận dụng để giải đượcác bpt mũ ,bpt logarit.
2. Về kĩ năng: 
Vận dụng thành thạo tính đơn điệu của hàm số mũ ,logarit dể giải các bptmũ, bpt loga rit cơ bản, đơn giản.
3. Về tư duy: 
• Hiểu được cách biến đổi đưa về cùng một cơ số đối với bất phương trình mũ và bất phương trình logarit.
• Tổng kết được các phương pháp giải phương trình mũ và phương trình logarit.
4. Về thái độ: 
- Trao đổi thảo luận nhóm nghiêm túc
- Khi giải bài tập cần tính cẩn thận chính xác
	II. Phương pháp:
1. Phương pháp: Thuyết trình, gợi mở, vấn đáp, nêu vấn đề
2. Công tác chuẩn bị: 
- Giáo viên: giáo án, sgk, thước kẻ, phấn, 
- Học sinh: Sgk, vở ghi, dụng cụ học tập, 
III. Tiến trình bài học:
 1. Kiêm tra bài cũ: 
1/ Nêu tính đơn điệu hàm số mũ y = ax ( a> 0, a) và vẽ đồ thị hàm số y = 2x 
2/ Nêu tính đơn điệu hàm số y = loga x ( a.>0, a, x>0 ) và tìm tập xác định của hàm số y = log2 (x2 -1)
2. Bài mới:
HĐ1: Giải bpt mũ
HOẠT ĐỘNG CỦA HS
HOẠT ĐỘNG CỦA HS
NỘI DUNG
HĐTP1-Yêu cầu học sinh nêu phương pháp giải bpt ax > b
 a x < b
- GVsử dụng bảng phụ ghi tập nghiêm bpt
GV phát phiếu học tập1 và 2
- Giao nhiệm vụ các nhóm giải
-Gọi đại diện nhóm trình bày trên bảng,các nhóm còn lại nhận xét
GV nhận xét và hoàn thiện bài giải
HĐTP2:GV nêu bài tập
Hướng dẫn học sinh nêu cách giải 
-Gọi HS giải trên bảng
-Gọi HS nhận xét bài giải
- GV hoàn thiện bài giải 
- Trả lời
_ HS nhận xét
-Giải theo nhóm
-Đại diện nhóm trình bày lời giải trên bảng
-Nhận xét
-Nêu các cách giải
-HSgiải trên bảng
-nhận xét
Bài 1: Giải bpt sau:
1/ (1)
2/ (2)
Giải:
(1)
(2)
Bài tập2 :giải bpt
4x +3.6x – 4.9x < 0(3)
Giải:
(3)
Đặt t = bpt trở thành t2 +3t – 4 < 0
Do t > 0 ta đươc 0< t<1
HĐ2: Giải bpt logarit 
-Gọi HS nêu cách giải bpt
Loga x >b ,Loga x <b và ghi tập nghiệm trên bảng
GV : phát phiếu học tập 3,4
Gọi đại diện nhóm trả lời
Gọi HS nhận xét 
GV hoàn thiện bài giải 
-Nêu cách giải
Nhóm giải trên phiếu học tập 
Đại diện nhóm trình bày trên bảng 
Nhóm còn lại nhận xét 
Củng cố: Ôn tập lại những kiến thức đã học.
Bài tập:
Tiết : 	44 + 45
Ngày soạn :	Ngày dạy:
ÔN TẬP CHƯƠNG II
I . Mục tiêu:
1. Về kiến thức: 
Qua bài học này giúp học sinh hệ thống các kiến thức về hàm số lũy thừa, mũ, lôgarit. Cụ thể:
- Phát biểu được định nghĩa lũy thừa với số mũ 0, Lũy thừa với số mũ nguyên, lũy thừa với số mũ hữu tỷ, lũy thừa với số mũ thực.
- Phát biểu được định nghĩa, viết các công thức về tính chất của hàm số mũ.
- Phát biểu được định nghĩa, viết các công thức về tính chất của lôgarit, lôgarit thập phân, lôgarit tự nhiên, hàm số lôgarit. 
2. Về kĩ năng: 
Học sinh rèn luyện các kỹ năng sau:
 - Sử dụng các quy tắc tính lũy thừa và lôgarit để tính các biểu thức, chứng minh các đẳng thức liên quan.
 - Giải phương trình, hệ phương trình, bất phương trình mũ và lôgarit.
3. Về tư duy: 
• Hiểu được cách biến đổi đưa về cùng một cơ số đối với bất phương trình mũ và bất phương trình logarit.
• Tổng kết được các phương pháp giải phương trình mũ và phương trình logarit.
4. Về thái độ: 
- Trao đổi thảo luận nhóm nghiêm túc
- Khi giải bài tập cần tính cẩn thận chính xác
	II. Phương pháp:
1. Phương pháp: Thuyết trình, gợi mở, vấn đáp, nêu vấn đề
2. Công tác chuẩn bị: 
- Giáo viên: giáo án, sgk, thước kẻ, phấn, 
- Học sinh: Sgk, vở ghi, dụng cụ học tập, 
III. Tiến trình bài học:
 1. Kiêm tra bài cũ: 
 Câu hỏi 1: Nêu định nghĩa và các tính chất của hàm số luỹ thừa?
 Câu hỏi 2: Hãy hoàn thiện bảng sau: 
Tính chất
Hàm số mũ
Hàm số lôgarit
Tập xác định
Đạo hàm
Chiều biến thiên
* Nếu thì hàm số đồng biến trên 
* Nếu thì hàm số nghịch biến trên 
Tiệm cận
Tiệm cận đứng là trục Oy
Dạng đồ thị
2. Bài mới:
Hoạt động 1: Sử dụng các tính chất của hàm số mũ và lôgarit để giải các bài tập sau:
 a) Cho biết tính 
 b) Cho biết tính 
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
- Gọi học sinh nhắc lại các tính chất của hàm số mũ và lôgarit .
- Yêu cầu học sinh vận dụng làm bài tập trên.
- Trả lời theo yêu cầu của giáo viên.
- Thảo luận và lên bảng trình bày.
a) 
b) Ta có:
Hoạt động 2: Giải các phương trình mũ và lôgarit sau:
 a) 
 b) 
 c) 
- Gọi học sinh nhắc lại phương pháp giải phương trình mũ.
- Yêu cầu học sinh vận dụng làm bài tập trên.
- Gọi học sinh nhắc lại phương pháp giải phương trình lôgarit.
- Tìm điều kiện để các lôgarit có nghĩa?
- Hướng dẫn hs sử dụng các công thức
+ 
+ 
+ để biến đổi phương trình đã cho
- Yêu cầu học sinh vận dụng làm bài tập trên.
- Gọi hoc sinh nhắc lại công thức lôgarit thập phân và lôgarit tự nhiên.
- Cho học sinh quan sát phương trình c) để tìm phương pháp giải.
- Giáo viên nhận xét, hoàn chỉnh lời giải.
- Trả lời theo yêu cầu của giáo viên.
Nếu thì pt (*) VN
Nếu thì pt (*) có nghiệm duy nhất 
- Thảo luận và lên bảng trình bày
- Trả lời theo yêu cầu của giáo viên.
Đk: 
- Thảo luận và lên bảng trình bày.
- Nhắc lại theo yêu cầu của giáo viên.
- Thảo luận để tìm phương pháp giải.
a) 
b) (*)
Đk: 
c) (3)
(3)
TIẾT 2
Hoạt động 3: Giải các bất phương trình sau :
 a) 
 b) 
- Gọi học sinh đưa các cơ số trong phương trình a) về dạng phân số và tìm mối liên hệ giữa các phân số đó.
- Yêu cầu học sinh vận dụng giải bất phương trình trên.
- Cho hs nêu phương pháp giải bpt lôgarit: 
- Hướng dẫn cho hoc sinh vận dụng phương pháp trên để giải bpt.
-Giáo viên nhận xét và hoàn thiện lời giải của hoc sinh.
- Trả lời theo yêu cầu của giáo viên.
Nếu đặt thì 
- Thảo luận và lên bảng trình bày.
- Trả lời theo yêu cầu của gv.
Đk: 
+ Nếu thì
(*) 
+ Nếu thì
(*) 
- Thảo luận và lên bảng trình bày.
a) 
b) (*)
Đk: 
Tập nghiệm 
Củng cố:
- Nêu tính đồng biến nghich biến của hàm số mũ và lôgarit.
- Nêu các phương pháp giải phương trình mũ và phương trình lôgarit.
Hướng dẫn học bài ở nhà và bài tập về nhà:
 - Xem lại các kiến thức đã học trong chương II, Làm các bài tập còn lại ở SGK và SBT.
 - Chuẩn bị kiểm tra 1 tiết chương II
Bài tập về nhà: 
 Giải các phương trình và bất phương trình sau:
a) 
b) (*)
c) 
* Hướng dẫn giải: 
a) Ta có: KQ : 
b) Ta có: ; có là nghiệm và hàm số : là hàm số đồng biến;
 là hàm số nghịch biến. KQ : x = 1
c) Tập nghiệm bất phương trình 

Tài liệu đính kèm:

  • docGiai tich 12 - HKI.doc