1. Posted by StRyKeR
2. Posted by manlio
3. Posted by manlio
4. Posted by hxtung
Tuyển tập 300 Bất Đẳng Thức Hay
Nguyễn Việt Anh
Ngày 16 tháng 7 năm 2005
1
Từ Các Diễn Đàn Toán Học Trên Thế Giới
1. Posted by StRyKeR
Cho x, y, z là các số không âm thỏa mãn x+ y + z = 1. Chứng minh rằng :
xny + ynz + znx ≤ n
n
(n+ 1)n+1
2. Posted by manlio
Cho x1, x2, . . . , xn là các sổ thực dương nhỏ hơn 1. Chứng minh rằng :
(x1 + x2 + . . .+ xn + 1)
2 ≥ 4(x21 + x22 + ....+ x2n)
3. Posted by manlio
Cho x1, x2, . . . , xn là các số thực dương. Chứng minh rằng :
1
x1
+
2
x1 + x2
+ . . .+
n
x1 + x2 + . . .+ xn
≤
( 1
x1
+
1
x2
+ . . .+
1
xn
)
4. Posted by hxtung
Tìm hằng số k, k′ tốt nhất sao cho
k ≤ v
v + w
+
w
w + x
+
x
x+ y
+
y
y + z
+
z
z + v
≤ k′
với mọi số thực v, w, x, y, z
5. Posted by pcalin
Chứng minh với x, y, z > 0 bất đẳng thức sau đúng:√
(x+ y + z)
(1
x
+
1
y
+
1
z
)
≥ 1 +
√
1 +
√
(x2 + y2 + z2)
( 1
x2
+
1
y2
+
1
z2
)
6. Posted by Mitzah
Chứng minh bất đẳng thức sau cho mọi tam giác ABC
bc cosA+ ca cosB + ab cosC
a sinA+ b sinB + c sinC
≥ 2r
7. Posted by georg
Chứng minh rằng (1
2
)n−1
≤ x2n + (1− x2)n ≤ 1
trong đó n > 1
2
8. Posted by Maverick
Tam giác ABC thỏa mãn sinA sinB sinC = 1
3
. Chứng minh khi đó ta có :
p3 + Sr + abc > 4R2p
9. Posted by Lagrangia
Cho các số thực dương a, b, c, x, y, z thỏa mãn a+ c = 2b và đặt
A =
ax+ by + cz
az + by + cx
B =
ay + bz + cx
ax+ bz + cy
C =
az + by + cx
ay + bz + cx
Chứng minh rằng maxA,B,C ≥ 1
10. Posted by vineet
Chứng minh bất đẳng thức sau cho a, b, c > 0 :
(2a+ b+ c)2
2a2 + (b+ c)2
+
(a+ 2b+ c)2
2b2 + (c+ a)2
+
(a+ b+ 2c)2
2c2 + (a+ b)2
≤ 8
11. Posted by treegoner
Cho ABC là tam giác nhọn. Chứng minh rằng:(
tan
A
2
+ tan
B
2
+ tan
C
2
)
(
√
cothA cothB +
√
cothB cothC +
√
cothC cothA) ≤ 3
12. Posted by DusT
Cho tam giác ABC. Chứng minh rằng
2R
r
≤ E1
E2
trong đó
E1 =
1
sinA
+
1
sinB
+
1
sinC
E2 = sinA+ sinB + sinC
3
13. Posted by Reyes
Cho a, b, c > 0. Chứng minh rằng√
a3
a3 + (b+ c)3
+
√
b3
b3 + (c+ a)3
+
√
c3
c3 + (a+ b)3
≤ 1
14. Posted by Maverick
Cho a, b, c, d > 0 ,đặt E = 4
√
abcd. Chứng minh rằng
a+ d2
b
+
c+ a2
d
+
b+ c2
a
+
d+ b2
c
≥ 4(1 + E)
15. Posted by Alexander Khrabrov
Cho 0 ≤ bk ≤ 1 với mọi k và
a1 ≥ a2 ≥ . . . an ≥ an+1 = 0
Chứng minh rằng
n∑
k=1
akbk ≤
[
Pn
i=1 bi
]
+1∑
k=1
ak
16. Posted by Lagrangia
Cho tam giác ABC nhọn. Chứng minh rằng
cosA+ cosB + cosC < sinA+ sinB + sinC
17. Posted by galois
Chứng minh trong mọi tam giác ABC ta có bất đẳng thức
cos
(A−B
2
)
+ cos
(B − C
2
)
+ cos
(C − A
2
)
≥ sin
(3A
2
)
+ sin
(3B
2
)
+ sin
(3C
2
)
18. Posted by Valentin Vornicu
Cho 3 số a, b, c thỏa mãn điều kiện a2 + b2 + c2 = 9. Chứng minh rằng
2(a+ b+ c)− abc ≤ 10
19. Posted by Michael
Cho 3 số thực dương a, b, c thỏa mãn a+ b+ c = 1. Chứng minh rằng
a2
b2 + 1
+
b2
c2 + 1
+
c2
a2 + 1
≥ 3
2
4
20. Posted by hxtung
Cho x1, x2, . . . , xn là các số thực nằm trong [0,
1
2
]. Chứng minh rằng( 1
x1
− 1
)( 1
x1
− 1
)
. . .
( 1
x1
− 1
)
≥
( n
x1 + x2 + . . .+ xn
− 1
)n
21. Posted by hxtung
Cho a, b, c là các số thực và n là số tự nhiên. Chứng minh rằng
1
a+ b
+
1
a+ 2b
+ · · ·+ 1
a+ nb
<
n√
a(a+ b)
22. Posted by hxtung
Chứng minh rằng với các số thực dương x1x2 . . . xn thỏa mãn x1x2 . . . xn = 1 bất đẳng
thức sau xảy ra
1
n− 1 + x1 +
1
n− 1 + x2 + · · ·+
1
n− 1 + xn ≤ 1
23. Posted by Mitzah
Chứng minh rằng
√
2n+ 1−
√
2n+
√
2n− 1− · · · −
√
2 + 1 >
√
2n+ 1
2
24. Posted by hxtung
Cho x, y, z là các số thực nằm trong [−1, 1]. Chứng minh rằng
1
(1− x)(1− y)(1− z) +
1
(1 + x)(1 + y)(1 + z)
≥ 2
25. Posted by hxtung
Cho x, y, z là các số thực dương thỏa mãn x+ y + z = 3. Chứng minh rằng
√
x+
√
y +
√
z ≥ xy + yz + zx
26. Posted by keira-khtn
Chứng minh rằng
2x2
2x2 + (y + z)2
+
2y2
2y2 + (z + x)2
+
2z2
2z2 + (x+ y)2
≤ 1
5
27. Posted by georg
Cho tam giác ABC. Chứng minh rằng
mambmc ≥ rarbrc
28. Posted by alekk
Chứng minh rằng với mọi số thực dương x, y ta có bất đẳng thức sau
xy + yx > 1
29. Posted by billzhao
Cho tam giác ABC. Chứng minh rằng
sin 2A+ sin 2B + sin 2C ≤ sinA+ sinB + sinC
30. Posted by hxtung
Cho x, y, z là các số thực dương thỏa mãn x+ y + z + 2 = xyz. Chứng minh rằng
5(x+ y + z) + 18 ≥ 8(√xy +√yz +√zx)
31. Posted by Mitzah
Chứng minh bất dẳng thức sau cho mọi số dương a, b, c
a
a+ 2b+ c
+
b
b+ 2c+ a
+
c
c+ 2a+ b
≤ 1
32. Posted by Lagrangia
Cho x1, x2, x3, x4, x5 > 0. Chứng minh rằng
(x1 + x2 + x3 + x4 + x5)
2 ≥ 4(x1x2 + x2x3 + x3x4 + x4x5 + x5x1)
33. Posted by Maverick
Cho a, b, c > 0 thỏa mãn
3(a+ b+ c) ≥ ab+ bc+ ca+ 2
Chứng minh rằng
a3 + bc
2
+
b3 + ca
3
+
c3 + ab
5
≥
√
abc(
√
a+
√
b+
√
c)
3
6
34. Posted by hxtung
Với các số thực không âm a, b, c, d ta đặt
S = a+ b+ c+ d
T = ab+ ac+ ad+ bc+ bd+ cd
R = abc+ abd+ acd+ bcd
H = abcd
Chứng minh rằng
S
4
≥
√
T
6
≥ 3
√
R
4
≥ 4
√
H
35. Posted by Maverick
Chứng minh trong mọi tam giác ta có bất đẳng thức
a(hb + hc) + b(hc + ha) + c(ha + hb) ≥ 12S
36. Posted by Lagrangia
Cho a, b, c, d là các cạnh của một tứ giác lồi. Chứng minh rằng
3
√
S ≤ p+ 4
√
abcd
37. Posted by Maverick
Cho a, b, c > 0. Chứng minh rằng
a3 + b3
c
+
b3 + c3
a
+
c3 + a3
b
≥ 2
3
(
√
ab+
√
bc+
√
ca)2
38. Posted by hxtung
Cho các số thực x1 ≥ x2 ≥ . . . ≥ xn và thỏa mãn
(x1)
k + (x2)
k + · · ·+ (xn)k ≥ 0
với mọi số nguyên dương k. Đặt d = max |x1|, . . . , |xn|
Chứng minh rằng x1 = d và
(x− x1)(x− x2) · · · (x− xn) ≤ xn − dn
với mọi số thực x ≥ d
7
39. Posted by hxtung
Cho các số thực dương a, b, c, d có tổng bằng 1. Chứng minh rằng
abc+ bcd+ cda+ dab ≤ 1 + 176abcd
27
40. Posted by keira-khtn
Với x1, x2, . . . , xn và y1, y2, . . . , yn là các số thực dương. Chứng minh rằng∑
min (xixj, yiyj) ≤
∑
min (xiyj, xjyi)
41. Posted by hxtung
Cho các số thực dương a, b, c thỏa mãn a+ b+ c ≥ 6. Chứng minh rằng√
a2 +
1
b+ c
+
√
b2 +
1
c+ a
+
√
c2 +
1
a+ b
≥ 3
√
17
2
42. Posted by Maverick
Cho a, b, c > 0. Chứng minh bất đẳng thức√
(a2b+ b2c+ c2a)(ab2 + bc2 + ca2) ≥ abc+ 3
√
(a3 + abc)(b3 + abc)(c3 + abc)
43. Posted by Myth
Cho x, y, z > 0. Chứng minh rằng√
x+
3
√
y + 4
√
z ≥ 32√xyz
44. Posted by Maverick
Cho a, b > 0.Đặt
A = (
√
a+
√
b)2
B =
a+
3
√
a2b+
3
√
ab2 + b
4
C =
a+
√
ab+ b
3
Chứng minh rằng
A ≤ B ≤ C
8
45. Posted by hxtung
Cho x, y, z là cá số thực dương. Chứng minh rằng
3(x2 − x+ 1)(y2 − y + 1)(z2 − z + 1) ≥ (xyz)2 + xyz + 1
46. Posted by hxtung
Chứng minh bất đẳng thức sau cho mọi số thực a, b, c
(a+ b− c)2(b+ c− a)2(c+ a− b)2 ≥ (a2 + b2 − c2)(b2 + c2 − a2)(c2 + a2 − b2)
47. Posted by Lagrangia
Cho tam giác ABC thỏa mãn  ≤ B̂ ≤ Ĉ ≤ pi
2
và B̂ ≥ pi
3
. Chứng minh rằng
mb ≥ ha
48. Posted by alekk
Cho a, b, c là các số thực nhỏ hơn 1. Chứng minh rằng
a2 + b2 + c2 ≤ a2b+ b2c+ c2a+ 1
49. Posted by alekk
Cho a, b, c > 0. Chứng minh rằng
√
b+ c(
√
a+ b+
√
a+ c) ≥ b+ c
2
+
√
ab+
√
ac
50. Posted by Arne
Chứng minh bất đẳng thức
cosec
pi
2
+ cosec
pi
4
+ · · ·+ cosec pi
2n−1
≤ cosec pi
2n
luôn đúng với mọi số nguyên dương n. Trong đó cosec(x) = 1
sinx
với x 6= kpi
51. Posted by Lagrangia
Cho a, b, c > 0 và n là số tự nhiên lớn hơn 2. Chứng minh rằng
n− 1
2
(an + bn) + cn ≥ nabc
(
a+ b
2
)n−3
9
52. Posted by Maverick
Cho các số thự dương x1, x2, . . . , xn. Chứng minh rằng
x1
x1x2
x2 · · ·xnxn ≥
(x1 + x2 + · · ·+ xn
n
)x1+x2+···+xn
53. Posted by Maverick
Cho a, b, c > 0 và thỏa mãn abc = 1. Chứng minh rằng
a
c
+
b
a
+
c
b
≥ a+ b+ c
54. Posted by hxtung
Cho dãy số x1, x2, . . . , xn thỏa mãn
x1 + x2 + · · ·+ xk ≤
√
k
với mọi số k nguyên dương nhỏ bằng n. Chứng minh rằng
x21 + x
2
2 + · · ·+ x2n ≥
1
4
(
1 +
1
2
+ · · ·+ 1
n
)
55. Posted by Maverick
Cho các số thực dương a, b, c thỏa mãn ab+ bc+ ca = 1. Chứng minh rằng
a√
1 + a2
+
b√
1 + b2
+
c√
1 + c2
≤ 3
2
56. Posted by Maverick
Cho các số dương a1, a2, . . . , an và b1, b2, . . . , bn. Chứng minh rằng(
a1 + a2 + · · ·+ an
b1 + b2 + · · ·+ bn
)b1+b2+···+bn
≥
(
a1
b1
)b1 (a2
b2
)b2
· · ·
(
an
bn
)bn
57. Posted by alekk
Cho x, y, z > 0. Chứng minh rằng
x3
x2 + y2
+
y3
y2 + z2
+
z3
z2 + x2
≥ x+ y + z
2
10
58. Posted by
Cho các số a1, a2, . . . , an−1 > 0 thỏa mãn a1 + a2 + · · ·+ an = 1 và b1, b2, . . . , bn là các số
thực. Chứng minh bất đẳng thức
b21 +
b22
a1
+ · · ·+ b
2
n
an−1
≥ 2b1(b2 + · · ·+ bn)
59. Posted by manlio
Chứng minh rằng với các số thực dương a1, a2, . . . , an ta có bất đẳng thức(
1 +
a21
a2
)(
1 +
a22
a3
)
· · ·
(
1 +
an1
a1
)
≥ (1 + a1)(1 + a2) · · · (1 + an)
60. Posted by Moubinool
Chứng minh rằng
a3
x
+
b3
y
+
c3
z
≥ (a+ b+ c)
3
3(x+ y + z)
với mọi số thực dương a, b, c, x, y, z
61. Posted by cezar lupu
Cho hàm số f : R→ R thỏa mãn
f(x) + f(y) ≤ 2− |x− y|
với mọi số thực x, y. Chứng minh rằng f(x) ≤ 1 với mọi số thực x.
62. Posted by hxtung
Cho x1, x2, . . . , xn là các số thực nằm trong khoảng
(
0, pi
2
)
sao cho
tan x1 + tanx2 + · · ·+ tan xn ≤ n
Chứng minh rằng
sin x1 sin x2 · · · sin xn ≤ 1√
2n
63. Posted by Maverick
Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh rằng
1 + ab2
c3
+
1 + bc2
a3
+
1 + ca2
b3
≥ 18
a3 + b3 + c3
11
64. Posted by Maverick
Cho a ≥ b ≥ c ≥ 0. Chứng minh rằng
a2 − b2
c
+
b2 − c2
a
+
c2 − a2
b
≥ 3a− 4b+ c
65. Posted by Maverick
Cho x, y, z ≥ 1. Chứng minh rằng
xx
2+2yzyy
2+2zxzz
2+2xy ≥ (xyz)xy+yz+zx
66. Posted by Maverick
Cho các số thực a1, a2, · · · , an nằm trong khoảng
(
0, 1
2
)
và thỏa
a1 + a2 + · · ·+ an = 1
Chứng minh rằng (
1
a1
− 1
)(
1
a2
− 1
)
· · ·
(
1
an
− 1
)
≥ (n2 − 1)n
67. Posted by hxtung
Chứng minh rằng với mọi số thực dương a1, a2, · · · , an ta có bất đẳng thức
a1
a2 + a3
+
a2
a3 + a4
+ · · ·+ an
a1 + a2
>
n
4
68. Posted by Maverick
Cho các số thực dương a, b, c, d thỏa mãn ab+ bc+ cd+ da = 1. Chứng minh rằng
a3
b+ c+ d
+
b3
a+ c+ d
+
c3
a+ b+ d
+
d3
a+ b+ c
≥ 1
3
69. Posted by hxtung
Cho tam giác ABC. Đặt
x =
r
R
, y =
a+ b+ c
2R
Chứng minh rằng
y ≥ √x(
√
6 +
√
2− x)
12
70. Posted by Maverick
Cho x, y, z > 0 thỏa xyz = 1. Chứng minh rằng
x3
(1 + y)(1 + z)
+
y3
(1 + z)(1 + x)
+
z3
(1 + x)(1 + y)
≥ 3
4
71. Posted by Arne
Cho a1, a2, a3, a4, a5 là các số thực có tổng bình phương bằng 1. Chứng minh rằng
min (ai − aj) ≤ 1
10
72. Posted by Lagrangia
Cho tam giác nhọn ABC. Chứng minh rằng
1
sin A
2
+
1
sin B
2
+
1
sin C
2
≥ 2
(
1
cos A−B
4
+
1
cos B−C
4
+
1
cos C−A
4
)
73. Posted by Maverick
Cho các số thực dương x1, x2, . . . , xn. Chứng minh rằng∑
xixj(x
2
i + x
2
j) ≤
(
∑
xi)
4
8
74. Posted by hxtung
Chứng minh rằng
a21 +
(
a1 + a2
2
)2
+ · · ·+
(
a1 + a2 + · · ·+ an
n
)2
≤ 4(a21 + a22 + · · ·+ a2 ... b, c > 0 thỏa mãn max(a, b, c) < 2min(a, b, c) chứng minh rằng
27a2b2c2 ≥ (2b− a)(2c− b)(2a− c)(a+ b+ c)3
46
304. Posted by manlio
Chứng minh rằng trong mọi tam giác ABC ta có
ma(bc− a2) +mb(ca− b2) +mc(ab− c2) ≥ 0
305. Posted by Lagrangia
Cho a, b, c ∈ R thỏa a ≥ b ≥ c. Chứng minh rằng
a2 + b2 + c2 − ab− bc− ca ≥ 7
3
(a− b)(b− c)
306. Posted by harazi
Cho x, y, z > 0 thoar xy + yz + zx+ xyz = 4. Chứng minh rằng
3
( 1√
x
+
1√
y
+
1√
z
)2
≥ (x+ 2)(y + 2)(z + 2)
307. Posted by wpolly
Cho x ∈ [1.5, 5]. Chứng minh rằng(√
2x− 3 +√15− 3x+√x+ 1
)2
< 71.25
308. Posted by nickolas
Cho a, b, c > 0 và abc = 1. Chứng minh rằng
1
1 + a+ b
+
1
1 + b+ c
+
1
1 + c+ a
≤ 1
2 + a
+
1
2 + b
+
1
2 + c
309. Posted by Namdung
Cho x1, x2, · · · , x2004 là các số thực thỏa −1 ≤ xi ≤ 1 với i = 1, 2, . . . , 2004 thỏa mãn
x31 + x
3
2 + · · ·+ x32004 = 0. Tìm giá trị lớn nhất của
x1 + x2 + · · ·+ x2004
310. Posted by manlio
Cho xi, yi với i = 1, 2, . . . , n là 2n số thực dương thỏa mãn xi + yi = 1. Chứng minh rằng
(1− x1x2 · · ·xn)m + (1− ym1 )(1− ym2 ) · · · (1− ymn ) ≥ 1
47
311. Posted by harazi
Cho a, b, c ≥ 0 thỏa ab+ bc+ ca = 3. Chứng minh rằng
a2 − a+ b2 − b+ c2 − c ≥ 1− abc
312. Posted by xxxxtt
Cho a, b, c thỏa mãn a2 + b2 + c2 = 5
3
. Chứng minh rằng
1
a
+
1
b
− 1
c
<
1
abc
313. Posted by khoa
Cho a, y, x, t > 0 thoar xy + xz + xt+ yz + yt+ zt = 6. Chứng minh rằng√
x4 + 1
2
+
√
y4 + 1
2
+
√
z4 + 1
2
≤ x2 + y2 + z2 + t2
314. Posted by Lagrangia
Cho hàm số f : R → (0,∞) là hàm tăng nghiêm ngặt. Giả sử rằng a1 ≤ a2 ≤ · · · ≤ an.
Chứng minh rằng
f(a1)
f(a2)
+
f(a2)
f(a3)
+ · · ·+ f(an)
f(a1)
≥ f(a2)
f(a1)
+
f(a3)
f(a2)
+ · · ·+ f(a1)
f(an)
315. Posted by harazi
Cho a1, a2, . . . , an là các số thực thỏa a
2
1 + a
2
2 + · · ·+ a2n = 1. Chứng minh rằng
n+ 1 ≥ (a1 + a2 + · · ·+ an)(a1 + a2 + · · ·+ an + a31 + a32 + · · ·+ a3n)
316. Posted by Namdung
Tìm hằng số k lớn nhất sao cho với mọi cặp số thực dương a, b, c thỏa mãn a2 > bc ta có
bất đẳng thức
(a2 − bc)2 > k(b2 − ca)(c2 − ab)
317. Posted by nickolas
Cho a, b, c ≥ 0. Chứng minh rằng
a3 + b3 + c3 + 6abc ≥ (a+ b+ c)
3
4
48
318. Posted by khoa
Cho a, b, c > 0 và abc = 1. Chứng minh rằng
(a)
√
8a2 + 1 +
√
8b2 + 1 +
√
8c2 + 1 ≤ 3(a+ b+ c)
(b) Tổng quát với 0 ≤ k ≤ 8 ta có bất đẳng thức
√
ka2 + 9− k +
√
kb2 + 9− k +
√
kc2 + 9− k ≤ 3(a+ b+ c)
(c) Tìm số k lớn nhất để bất đẳng thức trên đúng
319. Posted by khoa
Cho a, b, c > 0 thỏa a
4
3 + b
4
3 + c
4
3 = 3. Chứng minh rằng
a2 + b2 + c2 + 21 ≥
√
(a+ b)(a+ c) +
√
(b+ c)(b+ a) +
√
(c+ a)(c+ b)
320. Posted by nickolas
Cho a, b, c ≥ 0 sao cho 2max(a2, b2, c2) ≤ a2 + b2 + c2. Chứng minh rằng
(a+ b+ c)(a2 + b2 + c2)(a3 + b3 + c3) ≥ 4(a6 + b6 + c6)
321. Posted by Lagrangia
Cho 0 < a1 < a2 < · · · < an. Chứng minh rằng
1
a1
+
1
a2
+ · · ·+ 1
an
≤ 1
a1an
(
n(a1 + an)− (a1 + a2 + · · ·+ an)
)
322. Posted by Maverick
Cho a, b, c > 0. Chứng minh rằng
a2(2a+ b) + b2(2b+ 3) + c2(2c+ 3) ≥ 3(9abc− 1)
323. Posted by Namdung
Cho x, y, z > 0 thỏa x+ y + z = xyz. Chứng minh rằng
3125x6y4z2 ≤ 729(1 + x2)3(1 + y2)2(1 + z2)
324. Posted by Arrne
Cho a, b, c thỏa a+ b+ c = 0. Chứng minh rằng
a3 + b3 + c3 > 0⇔ a5 + b5 + c5
49
325. Posted by Gil
Cho a, b, c > 0 chứng minh rằng
(a2 + b2 + c2)(−a+ b+ c)(a− b+ c)(a+ b− c) ≤ abc(ab+ bc+ ca)
326. Posted by harazi
Cho a, b, c > 0 thỏa mãn a+ b+ c ≤ 3. Chứng minh bất đẳng thức
9
(1
a
+
1
b
+
1
c
)
− 3 ≥ 8(a+ b+ c)
abc
327. Posted by harazi
Cho a, b, c > 0. Chứng minh rằng
(a2 + b2)
( 2ab
a+ c
− c
)
+ (b2 + c2)
( 2bc
b+ a
− a
)
+ (c2 + a2)
( 2ca
c+ b
− b
)
≥ 0
328. Posted by A1lqdSchool
Cho x, y, z là các số thực dương thỏa x+ y + z = 2. Chứng minh rằng
x2y + y2z + z2x ≤ 1 + x
4 + y4 + z4
2
329. Posted by Namdung
Cho x, y, z là các số thực thỏa mãn (x+ y + z)3 = 32xyz. Tìm giá trị lớn nhất và giá trị
nhỏ nhất của
P =
x4 + y4 + z4
x+ y + z
330. Posted by arosisi
Chứng minh rằng
tan
A
2
+ tan
B
2
+ tan
C
2
≥ 2 + 8 sin A
2
sin
B
2
sin
C
2
≥ 2
331. Posted by darij grinberg
Cho x1, x2, · · · , x100 là các số nguyên dương thỏa mãn
1
x1
+
1
x2
+ · · ·+ 1
x100
= 20
Chứng minh rằng có ít nhất hai số bằng nhau
50
332. Posted by manlio
Cho a ≥ b ≥ c ≥ d. Chứng minh rằng
(a+ b+ c+ d)2 ≥ 8(ac+ bd)
333. Posted by Arrne
Chứng minh bất đẳng thức sau vơi mọi số thực a, b, c
(a2 + 2)(b2 + 2)(c2 + 2) ≥ 9(ab+ bc+ ca)
334. Posted by Lagrangia
Chứng minh răng với ∀x, y, z > 0 ta có bất đẳng thức
x
(x+ y)(x+ z)
+
y
(y + z)(y + x)
+
z
(z + x)(z + y)
≤ 9
4(x+ y + z)
335. Posted by manlio
Chứng minh rằng với mọi số thực x, y, z ta có
(x2y + y2z + z2x)(xy2 + yz2 + zx2) ≥ xyz(x+ y + z)3
336. Posted by arosisi
Cho a, b, c ≥ 0 và thỏa mãn điều kiện tồn tại căn thức. Chứng minh rằng
√
1− x+
√
4− y + x+
√
9− z + y +√16 + z ≤ 10
337. Posted by harazi
Các số thực a, b, c, d thỏa mãn (a2 + 1)(b2 + 1)(c2 + 1)(d2 + 1) = 16. Chứng minh rằng
ab+ bc+ cd+ da+ ac+ bd ≤ 5 + abcd
338. Posted by sigma
Cho các số thực dương a, b, c, d thỏa (a+ b)(b+ c)(c+ d)(d+ a) = 1. Chứng minh rằng
(2a+ b+ c)(2b+ c+ d)(2c+ d+ a)(2d+ a+ b)a2b2c2d2 ≤ 1
16
339. Posted by georg
Cho a, b, c là các số thực lớn hơn 1 thỏa ab+ bc+ ca = 2abc. Chứng minh rằng
√
a+ b+ c ≥ √a− 1 +√b− 1 +√c− 1
51
340. Posted by Anh Cuong
Cho x ≥ y ≥ z ≥ 0. Chứng minh rằng
x2y
z
+
y2z
x
+
z2x
y
≥ 2(x2 + y2 + z2)− xy − yz − zx
341. Posted by treegoner
Chứng minh rằng với mọi tam giác nhọn ABC ta có
a6 + b6 + c6
(a2 + b2 + c2)2
≥ R2
342. Posted by hxtung
Cho a, b, c là các số thuiực dưong. Chứng minh rằng
3
√
(a+ b)(b+ c)(c+ a)
8
≥
√
ab+ bc+ ca
3
343. Posted by romano
Chứng minh rằng trong mọi tam giác nhọn ABC ta có
(cosA)3 + (cosB)3 ≥ 2(cos A+B
2
)2
344. Posted by Minh Thang
Cho tam giac ABC. Chứng minh rằng
9
4
≥ sin2A+ sin2B + sin2C + 1
3
(ma −mb
c
+
mb −m− c
a
+
mc −ma
b
)
≥ 2
345. Posted by fuzzylogic
Cho a, b, c là các số thực dương thỏa mãn abc = 1. Chứng minh rằng
ab
a5 + b5 + ab
+
bc
b5 + c5 + bc
+
ca
c5 + a5 + ca
≤ 1
346. Posted by Fierytycoon
Cho ai ≥ 1 với i = 1, 2, . . . , n. Chứng minh rằng
(1 + a1)(2 + a2) · · · (1 + an) ≥ 2
n
n+ 1
(1 + a1 + b1 + · · ·+ an)
52
347. Posted by ThAzN1
Chứng minh rằng với x, y, z > 0 ta có
x2 + 1
(x+ y)(x+ z)
+
y2 + 1
(y + z)(y + x)
+
z2 + 1
(z + x)(z + y)
≥ (
√
x+
√
y +
√
z)2
2(x2 + y2 + z2)
348. Posted by wpolly
Cho các số a1, a2, a3, a4, a5 thỏa mãn
1
a1
+
1
a2
+
1
a3
+
1
a4
+
1
a5
= 1
Chứng minh rằng
a
4 + a21
+
a
4 + a22
+
a
4 + a23
+
a
4 + a24
+
a
4 + a25
≤ 1
349. Posted by xtar
Cho x, y, z > 0 chứng minh rằng
1
3
(
x+
y2
x
+
z3
y2
)(x+ y
2
)2
≥
(x+ y + z
3
)3
≥ z
(x+ y
2
)2
350. Posted by manlio
Cho a, b, c là 3 cạnh ta giác và x, y, z là các số thực. Chứng minh rằng
a2x2 + b2y2 + c2z2 ≥ xy(a2 + b2 − c2) + yz(b2 + c2 − a2) + zx(c2 + a2 − b2)
351. Posted by harazi
Cho a, b, c ≥ 0 thỏa mãn a2 + b2 + c2 = 6 và a+ b+ c ≥ 2 +max(a, b, c). Tìm giá trị nhỏ
nhất của √
4− a2 +
√
4− b2 +
√
4− c2
352. Posted by MM.Karim
Cho 1 > a, , b, c > −1. Chứng minh rằng
ab+ bc+ ca+ 1 > 0
353. Posted by Heman
53
354. Posted by TonyCui
Cho x ∈ (0, pi
4
). Chứng minh rằng
sin ln sinx < cos ln cos x
355. Posted by nickolas
Chứng minh rằng trong mọi tam giác ABC ta có
mamb
ab
+
mbmc
bc
+
mcma
ca
≥ 9
4
356. Posted by ThAzN1
Cho a, b, c > 0 và a+ b+ c = 1. Chứng minh rằng
1
a+ bc+ 3abc
+
1
b+ ca+ 3abc
+
1
c+ ab+ 3abc
≥ 2
ab+ bc+ ca+ abc
357. Posted by TonyCui
Cho x, y > 0. Chứng minh rằng
xx + yy ≥ xy + yx
358. Posted by keira-khtn
Cho a, b, c là các số thực. Chứng minh rằng
(a5 − a2 + 3)(b5 − b2 + 3)(c5 − c2 + 3) ≥ (a+ b+ c)3
359. Posted by cuong
Cho a, y, z > 0 thỏa a+ b+ c = 1. Chứng minh rằng√
x+
(y − z)2
12
+
√
y +
(z − x)2
12
+
√
z +
(x− y)2
12
≤
√
3
360. Posted by keira-khtn
Cho x > 0 hãy tìm giá trị nhỏ nhất
S = xx
361. Posted by RNecula
Cho tam giác ABC. Chứng minh rằng
m2a +m
2
b +m
2
c
ma +mb +mc
≥ 3S
2
54
362. Posted by manlio
Cho x, y, z là các số thực dương. Chứng minh rằng
(xy + yz + zx)
( 1
(x+ y)2
+
1
(y + z)2
+
1
(z + x)2
)
≥ 9
4
363. Posted by phuchung
Chứng minh rằng
cosA
1− cosA +
cosB
1− cosB +
cosC
1− cosC ≥ 3
364. Posted by romano
Cho x1, x2, . . . , xn là các số thực. Chứng minh rằng
(n− 1)(x21 + x22 + · · ·+ x2n) + n n
√
x21x
2
2 · · ·x2n ≥ (x1 + x2 + · · ·+ xn)2
365. Posted by bénabar
Chứng minh rằng với R > 0 ta có∫ pi
2
0
e−R sinxdx ≤ pi
2R
(1− e−R)
366. Posted by amir2
Chứng minh trong mọi tam giác ta có
1− sinA
1 + sinA
+
1− sinB
1 + sinB
+
1− sinC
1 + sinC
≤ 1
367. Posted by nickolas
Chứng minh trong mọi tam giác ABC ta có
R
2r
≥ ma
ha
≥ 1
2
(b
c
+
c
b
)
368. Posted by Mamat
Chứng minh với mọi a, b, c > 0 ta có
a
7 + b3 + c3
+
b
7 + a3 + c3
+
c
7 + a3 + b3
≤ 1
3
55
369. Posted by nthd
Cho a1, a2, . . . , an là các số tự nhiên phân biệt và số thực cho trước x ≥ 1. Tìm giá trị
nhỏ nhất của
E =
ax1 ln a1 + a
x
2 ln a2 + · · ·+ axn ln an
ax1 + a
x
2 + · · ·+ axn
370. Posted by mahbub
Chứng minh rằng với mọi số tự nhiên k, n thỏa 1 ≤ k ≤ 2n ta có(
2n+ 1
k − 1
)
+
(
2n+ 1
k + 1
)
≥ 2 · n+ 1
n+ 2
· · ·
(
2n+ 1
k
)
371. Posted by cezar
Dãy số {an} đuợc định nghĩa như sau x1 > 0 và
x(n+ 1) =
x1
n+ 1
+
x2
n+ 2
+ · · ·+ xn
n+ n
Chứng minh rằng xn họi tụ về 0.
372. Posted by Lagrangia -BĐT Karamata
Cho 2 dãy số x1 ≥ x2 ≥ · · · ≥ xn và y1 ≥ y2 ≥ · · · ≥ yn thỏa mãn
? x1 ≥ y1
? x1 + x2 ≥ y1 + y2
? · · · · · ·
? x1 + x2 + · · ·+ xn−1 ≥ y1 + y2 + · · ·+ yn−1
? x1 + x2 + · · ·+ xn = y1 + y2 + · · ·+ yn
Khi đó với mọi hàm số lồi f ta đều có
f(x1) + f(x2) + · · ·+ f(xn) ≥ f(y1) + f(y2) + · · ·+ f(yn)
373. Posted by hxtung
Cho a, b, c > 0 chứng minh rằng
a2
a2 + 2bc
+
b2
b2 + 2ca
+
c2
c2 + 2ab
≥ 1 ≥ bc
a2 + 2bc
+
ac
b2 + 2ac
+
ba
c2 + 2ba
374. Posted by minhkhoa
Cho a, b, c là các số thực dương thỏa ab+ bc+ ca = 3. Chứng minh rằng
a2 + b2 + c2 + abc ≥ a+ b+ c+ 1
56
375. Posted by galois
Cho tam giác ABC chứng minh rằng
sinA+ sinB + sinC > 2
376. Posted by Viet Math
Chứng minh rằng nếu a, b, c là các số thực dương ta có
√
a4 + b4 + c4 +
√
a2b2 + b2c2 + c2a2 ≥
√
a3b+ b3c+ c3a+
√
ab3 + bc3 + ca3
377. Posted by levi
Cho x, y, z > 0 thỏa xy + yz + zx+ xyz = 4. Chứng minh rằng
1 + x+ y + z ≤ x+ y + z + 1
x
+
1
y
+
1
z
378. Posted by silouan
Cho a, b, c, x, y, z > 0. Chứng minh rằng
xn
(y + z)m
+
yn
(z + x)m
+
zn
(x+ y)m
≥ x
n−m + yn−m + zn−m
2m
379. Posted by romano
Cho a, b, c > 0 thỏa mãn a2 + b2 + c2 = 3. Chứng minh rằng
(a)
a
1 + b
+
b
1 + c
+
c
1 + a
≥ 3
2
(b)
a
2 + b
+
b
2 + c
+
c
2 + a
≤ 1
57
Sẽ tiếp tục được cập nhật ...
58
Tài liệu đính kèm: