Tìm hệ số trong khai triển nhị thức Newton

Tìm hệ số trong khai triển nhị thức Newton

III. Tìm số hạng trong khai triển nhị thức Newton

1. Dạng tìm số hạng thứ k

Số hạng thứ k trong khai triển là .

Ví dụ 16. Tìm số hạng thứ 21 trong khai triển .

 

doc 10 trang Người đăng ngochoa2017 Lượt xem 9784Lượt tải 2 Download
Bạn đang xem tài liệu "Tìm hệ số trong khai triển nhị thức Newton", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
III. Tìm số hạng trong khai triển nhị thức Newton
1. Dạng tìm số hạng thứ k
Số hạng thứ k trong khai triển là .
Ví dụ 16. Tìm số hạng thứ 21 trong khai triển .
Giải
Số hạng thứ 21 là .
2. Dạng tìm số hạng chứa xm
i) Số hạng tổng quát trong khai triển là (a, b chứa x).
ii) Giải phương trình , số hạng cần tìm là và hệ số của số hạng chứa xm là M(k0).
Ví dụ 17. Tìm số hạng không chứa x trong khai triển .
Giải
Số hạng tổng quát trong khai triển là:
.
Số hạng không chứa x ứng với .
Vậy số hạng cần tìm là .
Ví dụ 18. Tìm số hạng chứa x37 trong khai triển .
Giải
Số hạng tổng quát trong khai triển là:
.
Số hạng chứa x37 ứng với .
Vậy số hạng cần tìm là .
Ví dụ 19. Tìm số hạng chứa x3 trong khai triển .
Giải
Số hạng tổng quát trong khai triển là .
Suy ra số hạng chứa x3 ứng với .
+ Với k = 2: nên số hạng chứa x3 là .
+ Với k = 3: có số hạng chứa x3 là .
Vậy số hạng cần tìm là .
Cách khác:
Ta có khai triển của là:
.
Số hạng chứa x3 chỉ có trong và .
+ .
+ .
Vậy số hạng cần tìm là .
3. Dạng tìm số hạng hữu tỉ
i) Số hạng tổng quát trong khai triển là ( là hữu tỉ).
ii) Giải hệ phương trình .
Số hạng cần tìm là .
Ví dụ 20. Tìm số hạng hữu tỉ trong khai triển .
Giải
Số hạng tổng quát trong khai triển là .
Số hạng hữu tỉ trong khai triển thỏa điều kiện:
.
+ Với k = 0: số hạng hữu tỉ là .
+ Với k = 6: số hạng hữu tỉ là .
Vậy số hạng cần tìm là và .
4. Dạng tìm hệ số lớn nhất trong khai triển Newton
Xét khai triển có số hạng tổng quát là .
Đặt ta có dãy hệ số là .
Để tìm số hạng lớn nhất của dãy ta thực hiện các bước sau:
Bước 1: giải bất phương trình ta tìm được k0 và suy ra .
Bước 2: giải bất phương trình ta tìm được k1 và suy ra .
Bước 3: số hạng lớn nhất của dãy là .
Chú ý:
Để đơn giản trong tính toán ta có thể làm gọn như sau:
Giải hệ bất phương trình . Suy ra hệ số lớn nhất là .
Ví dụ 21. Tìm hệ số lớn nhất trong khai triển .
Giải
Khai triển có số hạng tổng quát là .
Ta có:
 .
+ Với k = 2: hệ số là .
+ Với k = 3: hệ số là .
Vậy hệ số lớn nhất là 5,44.
Ví dụ 22. Tìm hệ số lớn nhất trong khai triển .
Giải
Khai triển có số hạng tổng quát là .
Ta có:
 .
Vậy hệ số lớn nhất là .
5. Dạng tìm hệ số chứa xk trong tổng n số hạng đầu tiên của cấp số nhân (tham khảo)
Tổng n số hạng đầu tiên của cấp số nhân với công bội q khác 1 là:
.
Xét tổng như là tổng của n số hạng đầu tiên của cấp số nhân với và công bội .
Áp dụng công thức ta được:
.
Suy ra hệ số của số hạng chứa xk trong S(x) là nhân với hệ số của số hạng chứa trong khai triển .
Ví dụ 23. Tìm hệ số của số hạng chứa x4 trong khai triển và rút gọn tổng sau:
.
Giải
Tổng S(x) có 15 – 4 + 1 = 12 số hạng nên ta có:
.
Suy ra hệ số của số hạng chứa x4 là hệ số của số hạng chứa x5 trong .
Vậy hệ số cần tìm là .
Nhận xét:
Bằng cách tính trực tiếp hệ số của từng số hạng trong tổng ta suy ra đẳng thức:
.
Ví dụ 24*. Tìm hệ số của số hạng chứa x2 trong khai triển và rút gọn tổng sau:
.
Giải
Ta có:
.
Đặt:
 và .
Suy ra hệ số của số hạng chứa x2 của S(x) bằng tổng hệ số số hạng chứa x và x2 của f(x), bằng tổng 2 lần hệ số số hạng chứa x2 và 3 lần hệ số số hạng chứa x3 của F(x).
Tổng F(x) có 100 số hạng nên ta có:
.
Suy ra hệ số số hạng chứa x2 và x3 của F(x) lần lượt là và .
Vậy hệ số cần tìm là .
Nhận xét:
Bằng cách tính trực tiếp hệ số của từng số hạng trong tổng ta suy ra đẳng thức:
.
Ví dụ 25*. Tìm hệ số của số hạng chứa x trong khai triển và rút gọn tổng sau:
.
Giải
Ta có:
.
Đặt:
 và .
Suy ra hệ số của số hạng chứa x của S(x) bằng tổng hệ số số hạng không chứa x và chứa x của f(x), bằng tổng hệ số số hạng chứa x và 2 lần hệ số số hạng chứa x2 của F(x).
Tổng F(x) có n số hạng nên ta có:
.
Suy ra hệ số số hạng chứa x và x2 của F(x) lần lượt là và .
Vậy hệ số cần tìm là .
Nhận xét:
Bằng cách tính trực tiếp hệ số của từng số hạng trong tổng ta suy ra đẳng thức:
BµI TËP
Tìm số hạng trong các khai triển sau
29) Số hạng thứ 13 trong khai triển 
30) Số hạng thứ 18 trong khai triển 
31) Số hạng không chứa x trong khai triển 
32) Số hạng không chứa x trong khai triển 
33) Số hạng chứa a, b và có số mũ bằng nhau trong khai triển 
Tìm hệ số của số hạng trong các khai triển sau
34) Hệ số của số hạng chứa trong khai triển 
35) Hệ số của số hạng chứa trong khai triển 
36) Hệ số của số hạng chứa trong khai triển 
37) Hệ số của số hạng chứa trong khai triển 
38) Hệ số của số hạng chứa trong khai triển 
39) Hệ số của số hạng chứa trong khai triển 
40) Hệ số của số hạng chứa trong khai triển:
41) Hệ số của số hạng chứa trong khai triển:
42) Tìm hệ số của số hạng chứa x10 trong khai triển .
 Từ đó suy ra giá trị của tổng 
43) Rút gọn tổng 
44) Rút gọn tổng 
Tìm số hạng hữu tỉ trong khai triển của các tổng sau
45) 	46) 	
47) 	48) 
Tìm hệ số lớn nhất trong khai triển của các tổng sau
49) 	50) 	51) .
HƯỚNG DẪN
29) 	30) 	31) .
32) Số hạng tổng quát của là .
Suy ra số hạng không chứa x ứng với k thỏa .
Vậy số hạng không chứa x là .
33) Số hạng tổng quát của là .
Suy ra . Vậy số hạng cần tìm là .
34) 	35) .
36) 
 .
Suy ra hệ số của số hạng chứa chỉ có trong 2 số hạng và .
+ nên có hệ số chứa x8 là .
+ nên có hệ số chứa x8 là .
Vậy hệ số cần tìm là .
37) 
 .
Thực hiện phép nhân phân phối ta suy ra hệ số của số hạng chứa chỉ có trong 3 số hạng:
, và .
Vậy hệ số cần tìm là .
38) 
 .
Suy ra hệ số của số hạng chứa chỉ có trong 2 số hạng và .
+ là hệ số của số hạng chứa .
+ có hệ số của số hạng chứa là .
Vậy hệ số cần tìm là .
39) (Tương tự) 1695.
40) Áp dụng công thức cấp số nhân cho tổng 48 số hạng ta có:
.
Suy ra hệ số của số hạng chứa là hệ số của số hạng chứa của .
Vậy hệ số cần tìm là .
41) Áp dụng công thức cấp số nhân cho 20 số hạng ta có:
.
Suy ra hệ số của số hạng chứa là hệ số của số hạng chứa của .
Vậy hệ số cần tìm là .
42) .
Thực hiện phép nhân phân phối ta suy ra hệ số của số hạng chứa là:
.
Mặt khác có hệ số của số hạng chứa x10 là .
Vậy .
43) .
Thực hiện phép nhân phân phối ta suy ra hệ số của số hạng chứa là:
.
Mặt khác có hệ số của số hạng chứa x10 là .
Vậy .
44) 	45) Số hạng cần tìm là .
46) Số hạng cần tìm là và .
47) Số hạng cần tìm là và .
48) Số hạng cần tìm là , và .
49) Hệ số lớn nhất là 	50) Hệ số lớn nhất là .
51) Hệ số lớn nhất là .
Bài 1. Tìm hệ số của số hạng chứa x4 ,
Bài 2. a)Tìm số hạng x31, Trong khai triển 
b)Trong khai triển Tìm số hạng không chứa x biết :
Bài 3.Tìm số hạng không chứa x trong khai triển 
Bài 4 Tìm hệ số của số hạng chứa x43 trong khai triển 
Bài 5.Biết trong khai triển Có hệ số của số hạng thứ 3 bằng 5 
Hãy tính số hạng đứng giữa trong khai triển 
Bài 6 Cho khai triển .Biết tổng của ba số hạng đầu itên trong khai triển bằng 631 .Tìm hệ số của số hạng có chứa x5 
Bài 7.Biết tổng hệ số của ba số hạng đầu tiên trong khai triển bằng 79 .Tim số hạng không chứa x
Bài 8. Tìm hệ số x8 trong khai triển :Biết 
Bài 9. Biết tổng các hệ số trong khai triển bằng 1024 .Tìm hệ số của x12 
Bài 10.Biết tổng các hệ số trong khai triển bằng 6561. Tìm hệ số của x4 
Bài 11. tìm hệ số của trong khai triển 
Bài 12.Trong khai triển Tìm số hạng chứa x và y sao cho số mũ của x và y 
Là các số nguyên dương
Bài 13.Tìm các hạng tử là số nguyên trong khai triển 
Bài 14.Có bao nhiêu hạng tử là số nguyên trong Khai triiển 
Bài 15.Tìm các hạng tử là số nguyên trong khai triển
Bài 16.Có bao nhiêu hạng tử là số nguyện trong khai triển 
Bài 16. Khai triển đa thức 
Tính A9 
Bài 17. Cho khai triển :Biết và số hạng thứ 4 bằng 20n .Tim x và n
Bài 18. Trong khai triển : tìm số hạng chứa a,b có số mũ bằng nhau 

Tài liệu đính kèm:

  • docTim he so trong khai trien Newton.doc