Ôn thi tốt nghiệp thpt . Năm học : 2008 - 2009 môn Toán

Ôn thi tốt nghiệp thpt . Năm học : 2008 - 2009 môn Toán

 Câu I ( 3,0 điểm )

 Cho hàm số y = x + 2 / 1- x có đồ thị (C)

a. Khảo sát sự biến thiên và vẽ đồ thị (C) .

b. Chứng minh rằng đường thẳng (d) : y = mx- 4- 2m luôn đi qua một điểm cố định của đường cong (C) khi m thay đổi

 

doc 4 trang Người đăng haha99 Lượt xem 1004Lượt tải 0 Download
Bạn đang xem tài liệu "Ôn thi tốt nghiệp thpt . Năm học : 2008 - 2009 môn Toán", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Giới thiệu đến các trường một số đề ôn thi tốt nghiệp môn Toán của thầy giáo Đỗ Minh Quang, do Tổ Toán THPT Quốc Học sưu tầm và giới thiệu. Đề nghị các trường tham khảo, thẩm định và cho ý kiến.
ĐỀ 1
( Thời gian làm bài 150 phút )
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) 
 Cho hàm số có đồ thị (C)
Khảo sát sự biến thiên và vẽ đồ thị (C) .
Chứng minh rằng đường thẳng (d) : y = mx 42m luôn đi qua một điểm cố định của đường cong (C) khi m thay đổi . .
 Câu II ( 3,0 điểm ) 
Giải phương trình 
Tính tìch phân : I = 
Viết phương trình tiếp tuyến với đồ thị , biết rằng tiếp tuyến này song song với đường thẳng (d) : .
Câu III ( 1,0 điểm ) 
 Cho hình chóp S,ABC . Gọi M là một điểm thuộc cạnh SA sao cho MS = 2 MA . Tính tỉ số thể tích của hai khối chóp M.SBC và M.ABC .
II . PHẦN RIÊNG ( 3 điểm ) 
 Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó
 1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC có các đỉnh A,B,C lần lượt nằm trên các trục Ox,Oy,Oz và có trọng tâm G(1;2;) Hãy tính diện tích tam giác ABC . 
Câu V.a ( 1,0 điểm ) : 
 Cho hình phẳng (H) giới hạn bởi các đường ( C ) : y = , (d) : y = và trục hoành . Tính diện tích của hình phẳng (H) . 
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz , cho hình lập phương ABCD.A’B’C’D’ . Biết A’(0;0;0) , B’(a;0;0),D’(0;a;0) , A(0;0;a) với a>0 . Gọi M,N lần lượt là trung điểm các cạnh AB và B’C’ .
 a. Viết phương trình mặt phẳng (P) đi qua M và song song với hai đường thẳng AN và BD’ ..
 b. Tính góc và khoảng cách giữa hai đường thẳng AN và BD’ .
Câu V.b ( 1,0 điểm ) : 
 Tìm các hệ số a,b sao cho parabol (P) : tiếp xúc với hypebol (H) : Tại điểm M(1;1)
HƯỚNG DẪN
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
Câu I ( 3,0 điểm ) 
 a) 2đ
 x
 1 
 +
 +
y
 b) 1đ 
 Ta có : y = mx 42m 
 Hệ thức (*) đúng với mọi m 
 Đường thẳng y = mx 42m luôn đi qua 
 điểm cố định A(2; 4) thuộc (C) 
 ( Vì tọa độ điểm A thỏa mãn phương trình )
Câu II ( 3,0 điểm ) 
 a) 1đ Điều kiện : x > 1 .
 Đặt : thì 
 b) 1đ Đặt 
 c) 1đ Đường thẳng (d) 
 Gọi là tiếp tuyến cần tìm , vì song song với (d) nên tiếp tuyến có hệ số góc k = 
 Do đó : 
 là tiếp tuyến của ( C ) hệ sau có nghiệm 
Câu III ( 1,0 điểm ) 
 Ta có : 
 Từ (1) , (2) suy ra : 
II . PHẦN RIÊNG ( 3 điểm ) 
 1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Vì các đỉnh A,B,C lần lượt nằm trên các trục Ox,Oy,Oz nên ta gọi A(x;0;0) , B(0;y;0),
 C(0;0;z) . Theo đề :
 G(1;2;) là trọng tâm tam giác ABC 0,5đ
 Vậy tọa độ của các đỉnh là A(3;0;0) , B(0;6;0), C(0;0;) 0,25đ 
 Mặt khác : 0,25đ
 Phương trình mặt phẳng (ABC) : 0,25đ
 nên 0,25đ
 Mặt khác : 
 0,25đ
 Vậy : 0,25đ
Câu V.a ( 1,0 điểm ) : 
 Phương trình hònh độ giao điểm của ( C ) và (d) : 
 2. Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
 a) 1đ Từ giả thiết ta tính được : B(a;0;a), 
 D(0;a;0) , A(0;0;a) , M( , N(a;;0) .
 Mặt phẳng (P) đi qua M và song song với 
 AN và BD’ nên có VTPT là
 Suy ra : 
:
 b) 1đ Gọi là góc giữa và . Ta có : 
Do đó : 
 Câu V.b ( 1,0 điểm ) : 
 Tiếp điểm M có hoành độ chính là nghiệm của hệ phương trình :
 (I) 
 Thay hoành độ của điểm M vào hệ phương trình (I) , ta được :
 Vậy giá trị cần tìm là 
*******************************************

Tài liệu đính kèm:

  • docMon luyen toanQuoc Hoc Hue 1.doc