I. MỤC TIÊU:
1. Về kiến thức:
- Nắm được ĐN, phương pháp tìm TCĐ, TCN của đồ thị hs.
2. Về kỷ năng:
- Tìm được TCĐ, TCN của đồ thị hs .
- Tính tốt các giới hạn của hàm số.
3. Về tư duy, thái độ:
- Rèn luyện tư duy logic, tư duy lý luận.
- Tích cực, chủ động nắm kiến thức, tham gia xây dựng bài.
II. CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH:
1. Chuẩn bị của giáo viên: Giáo án, thước kẻ
2. Chuẩn bị của học sinh: SGK, Xem nội dung kiến thức của bài học và các nội dung kiến thức có liên quan đến bài học như : bài toán tính giới hạn hs .
Ngày soạn: 10/8/2009 Ngày giảng: 12B1 : 12B2 : 12A1 : Tiết : 10 (BT) 9 (PT) ®êng tiÖm cËn MỤC TIÊU: Về kiến thức: Nắm được ĐN, phương pháp tìm TCĐ, TCN của đồ thị hs. Về kỷ năng: Tìm được TCĐ, TCN của đồ thị hs . Tính tốt các giới hạn của hàm số. Về tư duy, thái độ: Rèn luyện tư duy logic, tư duy lý luận. Tích cực, chủ động nắm kiến thức, tham gia xây dựng bài. CHUẨN BỊ CỦA GIÁO VIÊN VÀ HỌC SINH: Chuẩn bị của giáo viên: Giáo án, thước kẻ Chuẩn bị của học sinh: SGK, Xem nội dung kiến thức của bài học và các nội dung kiến thức có liên quan đến bài học như : bài toán tính giới hạn hs. PHƯƠNG PHÁP: Gợi mở, vấn đáp, giải quyết vấn đề. TIẾN TRÌNH DẠY HỌC: Ổn định : 12B1 : 12B2 : 12A1 : Bài cũ ? Bài mới: Hoạt động 1: Hình thành định nghĩa TCN. oạt động của giáo viên Hoạt động của học sinh Ghi bảng - có đồ thị (C) như hình vẽ: Lấy điểm M(x;y) thuộc (C). Quan sát đồ thị, nhận xét khoảng cách từ M đến đt y = -1 khi x và x . Gv nhận xét khi x và x thì k/c từ M đến đt y= -1dần về 0. Ta nói đt y = -1 là TCN của đồthị (C). Từ đó hình thành định nghĩa TCN. Từ phân tích HĐ1, gọi học sinh khái quát định nghĩa TCN. - Từ ĐN nhận xét đường TCN có phương như thế nào với các trục toạ độ? Gv giới thiệu với Hs vd 1 (SGK, trang 27, 28) để Hs nhận thức một cách chính xác hơn về khái niệm đường tiệm cận ngang Yêu cầu học sinh giải ví dụ ? - HS quan sát đồ thị, trả lời. - Từ HĐ1 Hs khái quát . - Hs trả lời tại chổ - Hs trả lời tại chổ Thực hành giải a, b, I . Đường tiệm cận ngang x = 1 y = -1 Định nghĩa Cho hàm số y = f(x) xác định trên một khoảng vô hạn (là khoảng dạng: (a; + ¥), (- ¥; b) hoặc (- ¥; + ¥)). Đường thẳng y = y0 là tiệm cận ngang của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thoả mãn: ; Ví dụ : Tìm tiệm cân ngang của hàm số a, b, Giải a,Ta có Tiêm cận ngang là y = 1 b, Ta có Tiêm cận ngang là y = 2009 Củng cố bài học Cách tìm đường tiệm cận Hướng dẫn học bài ở nhà và làm bài tập về nhà. Làm bài tập trang 30 sgk.
Tài liệu đính kèm: