Giáo án môn Giải tích 12 tiết 35 đến 74

Giáo án môn Giải tích 12 tiết 35 đến 74

Tiết 35 BÀI TẬP KHẢO SÁT HÀM SỐ

Ngày dạy :

I. Mục tiêu : Qua bài học, học sinh cần nắm :

1. Kiến thức : Củng cố lại các kiến thức về khảo sát hàm số y = ax3 + bx2 + cx + d, (a ≠ 0) và y = ax4 + bx2 + c, (a ≠ 0).

2. Kĩ năng : Thành thạo khảo sát hàm số bậc ba và trùng phương, tính toán các con số.

 3. Tư duy : Lôgic, quy lạ về quen, tương tự.

 4. Thái độ : Cẩn thận, chính xác .

II.Phương tiện :

1. Thực tiễn : Học sinh đã học lý thuyết KSHS và bước đầu thực hành.

2. Phương tiện :

III. Phương pháp : Luyện tập, vấn đáp.

IV. Tiến trình bài học :

1/ Kiểm tra bài cũ : Tóm tắt sơ đồ khảo sát hàm số trùng phương ?

 

doc 67 trang Người đăng ngochoa2017 Lượt xem 969Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án môn Giải tích 12 tiết 35 đến 74", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tiết 35 BÀI TẬP KHẢO SÁT HÀM SỐ
Ngày dạy : 
I. Mục tiêu : Qua bài học, học sinh cần nắm :
1. Kiến thức : Củng cố lại các kiến thức về khảo sát hàm số y = ax3 + bx2 + cx + d, (a ≠ 0) và y = ax4 + bx2 + c, (a ≠ 0). 
2. Kĩ năng : Thành thạo khảo sát hàm số bậc ba và trùng phương, tính toán các con số.
	3. Tư duy : Lôgic, quy lạ về quen, tương tự.
 4. Thái độ : Cẩn thận, chính xác .
II.Phương tiện : 
1. Thực tiễn : Học sinh đã học lý thuyết KSHS và bước đầu thực hành.
2. Phương tiện : 
III. Phương pháp : Luyện tập, vấn đáp.
IV. Tiến trình bài học : 
1/ Kiểm tra bài cũ : Tóm tắt sơ đồ khảo sát hàm số trùng phương ?
2/ Nội dung bài mới:
TG
Hoạt động của thầy
Hoạt động của trò
Ghi bảng
Hoạt động 1 Goüi HS giaíi BT 1e.
 Nãu TXÂ cuía hs? 
 Âãø xẹt chiãưu biãún thiãn cuía haìm säú ta laìm ntn.
 Nãu cỉûc trë cuía hs naìy ? 
 Ta cáưn xạc âënh cạc giåïi hản naìo?
 Âãø xạc âënh tênh läưi loỵm vaì âiãøm uäún cuía ÂTHS naìy ta laìm ntn?
Hoạt động 2 Goüi HS giaíi BT 1g.
 Nãu TXÂ cuía hs? 
 Âãø xẹt chiãưu biãún thiãn cuía haìm säú ta laìm ntn.
 Nãu cỉûc trë cuía hs naìy ? 
 Ta cáưn xạc âënh cạc giåïi hản naìo?
 Âãø xạc âënh tênh läưi loỵm cvaì âiãøm uäún cuía ÂTHS naìy ta laìm ntn?
 Âäư thë haìm säú cọ tênh cháút gç?
 Ta nháûn xẹt gç vãư ÂTHS naìy?
„. Củng cố : Nắm vững sơ đồ khảo sát hàm số.
Nắm vững cách khảo sát hàm số y = ax3 + bx2 + cx + d.
Làm các bài tập SGK.
* TXÂ: D = R.
* Chiãưu biãún thiãn
y’ = 2x3 - 2x = 2x(x2 - 1)
y’ = 0 x = 
Haìm säú nghëch biãún (,-1) vaì (0,1). Haìm säú âäưng biãún trãn (-1,0) vaì (1,)
* Cỉûc trë Haìm säú cỉûc tiãøu tải x =1 vaì yCT = y(1)= -2
Haìm säú cỉûc âải tải x= 0 vaì yCÂ= y(0) =
 * Giåïi hản:	; 
* y’’ = 6x2 - 2 = 0 x =
Xẹt dáúu y’’ Suy ra tênh läưi loỵm âiãøm uäún.
* Nháûn Oy laìm trủc âäúi xỉïng
* TXÂ: D = R.
* Chiãưu biãún thiãn 
y’ = 4x - 4x3 = 4x(1 - x2)
y’ = 0 x = 0, x = -1, x = 1
 Haìm säú âäưng biãún trãn (,-1) vaì (0, 1). Haìm säú nghëch biãún trãn (-1, 0) vaì (1,)
* Cỉûc trë
Haìm säú cỉûc âải tải x =1 vaì yCÂ = y(1)= 1
Haìm säú cỉûc tiãøu tải x= 0 vaì yCT = y(0) = 0
* Giåïi hản: ; 
 *Tênh läưi, loỵm vaì âiãøm uäún
y’’ = 4 - 12x2 = 0 x=
I'()
* Nháûn trủc Oy laìm trủc âäúi xỉïng
Càõt Ox tải (-,0), (,0)
e) Khaío sạt haìm säú: y = 
1. TXÂ: D = R.
2. Sỉû biãún thiãn
	a. Chiãưu biãún thiãn
	y’ = 2x3 - 2x = 2x(x2 - 1)
	y’ = 0 x = 
Haìm säú nghëch biãún (,-1) vaì (0,1)
Haìm säú âäưng biãún trãn (-1,0) vaì (1,)
	b. Cỉûc trë
Haìm säú cỉûc tiãøu tải x =1 vaì yCT = y(1)= -2
Haìm säú cỉûc âải tải x= 0 vaì yCÂ= y(0) =
 c. Giåïi hản:	; 
Âäư thë khäng cọ tiãûm cáûn
 d. Baíng biãún thiãn
 x -1 0 1 
 y ' - 0 + 0 - 0 +
 y - 
 -2 -2
 e. Tênh läưi, loỵm vaì âiãøm uäún
y’’ = 6x2 - 2 = 0 x =
 x -1/ 1/ 
 y '' + 0 - 0 +
Âäư thë loỵm Â/uäún läưi Â//uäún loỵm
 I( I'(
3. Âäư thë:
Nháûn Oy laìm trủc âäúi xỉïng
 Càõt Oy tải (0,)
 Càõt Ox tải (0,-), (0,)
g. Khaío sạt haìm säú: y = 2x2 - x4
1. TXÂ: D = R.
2. Sỉû biãún thiãn
	a. Chiãưu biãún thiãn
	y’ = 4x - 4x3 = 4x(1 - x2)
	y’ = 0 x = 0, x = -1, x = 1
 x -1 0 1 
 y ' + 0 - 0 + 0 -
Haìm säú âäưng biãún trãn (,-1) vaì (0, 1)
Haìm säú nghëch biãún trãn (-1, 0) vaì (1,)
b. Cỉûc trë
Haìm säú cỉûc âải tải x =1 vaì yCÂ = y(1)= 1
Haìm säú cỉûc tiãøu tải x= 0 vaì yCT = y(0) = 0
c. Giåïi hản: ; 
Âäư thë khäng cọ tiãûm cáûn
d. Baíng biãún thiãn
 x -1 0 1 
 y ' + 0 - 0 + 0 - 
 y 1 1
 0 
e.Tênh läưi, loỵm vaì âiãøm uäún
y’’ = 4 - 12x2 = 0 x=
 x -1/ 1/ 
 y '' - 0 + 0 - 
Âäư thë läưi Â//uäún loỵm Â/uäún läưi
 I(-) I'()
3. Âäư thë:	
Nháûn trủc Oy laìm trủc âäúi xỉïng
Càõt Ox tải (-,0), (,0)
Tiết 36 BÀI TẬP KHẢO SÁT HÀM SỐ
Ngày dạy : 
I. Mục tiêu : Qua bài học, học sinh cần nắm :
1. Kiến thức : Củng cố lại các kiến thức về khảo sát hàm số y = ax3 + bx2 + cx + d, (a ≠ 0) và y = ax4 + bx2 + c, (a ≠ 0). 
2. Kĩ năng : Thành thạo khảo sát hàm số bậc ba và trùng phương, tính toán các con số.
	3. Tư duy : Lôgic, quy lạ về quen, tương tự.
 4. Thái độ : Cẩn thận, chính xác .
II.Phương tiện : 
1. Thực tiễn : Học sinh đã học lý thuyết KSHS và bước đầu thực hành.
2. Phương tiện : 
III. Phương pháp : Luyện tập, vấn đáp.
IV. Tiến trình bài học : 
1/ Kiểm tra bài cũ : Tóm tắt sơ đồ khảo sát hàm số đa thức ? 
2/ Nội dung bài mới:
TG
Hoạt động của Thầy
Hoạt động của Trò
Nội dung ghi bảng
 Hoạt động 1. Goüi HS giaíi BT 
 Nãu TXÂ cuía hs? 
 Âãø xẹt chiãưu biãún thiãn cuía haìm säú ta laìm ntn.
 Nãu cỉûc trë cuía hs naìy?? 
 Ta cáưn xạc âënh cạc giåïi hản naìo?
 Âãø xạc âënh tênh läưi loỵm cvaì âiãøm uäún cuía ÂTHS naìy ta laìm ntn?
 Ta nháûn xẹt gç vãư ÂTHS naìy?
Hoạt động 2 Goüi HS giaíi BT 1d.
 Nãu TXÂ cuía hs? 
 Âãø xẹt chiãưu biãún thiãn cuía haìm säú ta laìm ntn.
 Nãu cỉûc trë cuía hs naìy ? 
 Ta cáưn xạc âënh cạc giåïi hản naìo?
 Âãø xạc âënh tênh läưi loỵm cvaì âiãøm uäún cuía ÂTHS naìy ta laìm ntn?
„. Củng cố : Nắm vững sơ đồ khảo sát hàm số.
Nắm vững cách khảo sát hàm số y = ax3 + bx2 + cx + d.
Làm các bài tập SGK.
* TXÂ: D = R.
* Chiãưu biãún thiãn
y’ = -3x2 + 2x - 1 < 0 , Haìm säú nghëch biãún trãn (,)
* Cỉûc trë: haìm säú khäng cọ cỉûc trë.
* Giåïi hản: 	
 * Tênh läưi loỵm vaì âiãøm uäún
 y’’ = -6x + 2; y’’ = 0 x = 1/3.
 * Nháûn âiãøm uäún I() laìm tám âäúi xỉïng. Càõt Oy tải (0,-1)
* TXÂ: D = R.
* chiãưu biãún thiãn
y’ = 6x2 - 6x = 6x(x - 1)
y’ = 0 x = 0, x = 1
Haìm säú âäưng biãún trãn (,0) vaì (1,). Haìm säú nghëch biãún trãn (0,1)
* Cỉûc trë: Haìm säú âảt cỉûc âải tải x = 0 vaì yCÂ= y(0)= 1. Haìm säú âảt cỉûc tiãøu tải x = 1 vaì yCT= y(1)= 0
* Giåïi hản 
Âäư thë khäng cọ tiãûm cáûn
* Tênh läưi, loỵm vaì âiãøm uäún
 y’’ = 12x - 6 = 0 x = 
* Âäư thë: nháûn âiãøm uäún cuía ÂTHS laìm tám âäúi xỉïng.
Baìi 1c/103. y = - x3 + x2 - x - 1
1. TXÂ: D = R.
2. Sỉû biãún thiãn
 a. Chiãưu biãún thiãn
y’ = - 3x2 + 2x - 1 < 0 , (a = - 3 < 0, ’< 0)
Haìm säú nghëch biãún trãn (,)
 b. Cỉûc trë: haìm säú khäng cọ cỉûc trë
c. Giåïi hản: , 
 Âäư thë hàm số khäng cọ tiãûm cáûn.
 d. Tênh läưi loỵm vaì âiãøm uäún:
 y’’ = -6x + 2; y’’ = 0 x = 1/3
x
 1/3 
y ‘’
 + 0 -
ĐTHS
loỵm Â/ uäún läưi I(1/3;-34//27)
 e. Baíng biãún thiãn 
x
- ¥ +¥
y ’
-
y
+ ¥
 - ¥
3. Âäư thë: 
* Các điểm đặc biệt thuộc đồ thị hàm số : 
U
A
B
C
D
E
x
1/3
y
-34/27
* Tiếp tuyến của ĐTHS tại U là : 
* Nháûn xét : ĐTHS nhận âiãøm uäún I() laìm tám âäúi xỉïng.
d) y = 2x3 - 3x2 + 1
1. TXÂ: D = R.
2. Sỉû biãún thiãn.
a.chiãưu biãún thiãn :
y’ = 6x2 - 6x = 6x(x - 1)
y’ = 0 x = 0 Ú x = 1.
X
- ¥ 0 1 +¥
y ‘
 + 0 - 0 +
Vậy : haìm säú âäưng biãún trãn các khoảng : (; 0) và (1;), haìm säú nghëch biãún trãn khoảng : (0,1).
b. Cỉûc trë : 
Haìm säú âảt cỉûc âải tải x = 0 vaì yCÂ= y(0)= 1
Haìm säú âảt cỉûc tiãøu tải x = 1 vaì yCT= y(1)= 0
 c. Giåïi hản : , 
	 Âäư thë hàm số khäng cọ tiãûm cáûn.
 e. Tênh läưi, loỵm vaì âiãøm uäún : y’’ = 12x - 6 = 0 x = , y(1/2) = 1/2.
Bảng xẹt dấu y’’ : 
 x 1/2 
 y '' - 0 +
Âäư thë läưi Â/uäún loỵm
 U(1/2; 1/2)
d. Baíng biãún thiãn : 
 x 0 1 
 y ' + 0 - 0 +
 y 1 CT 
 CĐ 0
3) Âäư thë: 
* Các điểm đặc biệt thuộc đồ thị hàm số : 
A
B
U
C
D
E
x
0
1
1/2
y
1
0
1/2
* Tiếp tuyến của ĐTHS tại 
 + A là : y = 1.
 + B là : y = 0.
 + U là : 
* Nhận xét : ĐTHS nhận điểm uốn U(1/2; 1/2) làm tâm đối xứng.
Tiết 37 Bài KHẢO SÁT HÀM SỐ
Ngày dạy : 
I. Mục tiêu : Qua bài học, học sinh cần nắm :
1. Kiến thức : Hướng dẫn khảo sát hàm số y = , c ≠ 0, D = ad - bc ≠ 0,.
2. Kĩ năng : Thành thạo khảo sát hàm số bậc nhất trên bậc nhất và tính toán các con số.
	3. Tư duy : Lôgic, quy lạ về quen, tương tự.
 4. Thái độ : Cẩn thận, chính xác .
II.Phương tiện : 
1. Thực tiễn : Học sinh đã học lý thuyết KSHS và bước đầu thực hành.
2. Phương tiện : 
III. Phương pháp : Luyện tập, vấn đáp.
IV. Tiến trình bài học : 
1/ Kiểm tra bài cũ : Tóm tắt sơ đồ khảo sát hàm số trùng phương ?
2/ Nội dung bài mới:
TG
Hoạt động của Thầy
Hoạt động của Trò
Nội dung ghi bảng
Hoảt âäüng 1. Hỉåïng dáùn hs khaío sạt haìm säú y = 
 Nãu TXÂ cuía hs? 
 Âãø xẹt chiãưu biãún thiãn cuía haìm säú ta laìm ntn ?
 Nãu cỉûc trë cuía hs naìy ? 
 Ta cáưn xạc âënh cạc giåïi hản naìo?
Tỉì âọ suy ra cạc tiãûm cáûn cuía ÂTHS naìy?
Chụ yï: Âäúi våïi haìm säú naìy ta khäng xẹt âãún tênh läưi, loỵm vaì âiãøm uäún.
Âäư thë luän cọ mäüt tiãûm cáûn âỉïng vaì mäüt tiãûm cáûn ngang?
 Âäư thë haìm säú cọ tênh cháút gç?
Hoảt âäüng 2. Hỉåïng dáùn hs khaío sạt haìm säú y = .
 Nãu TXÂ cuía hs? 
 Âãø xẹt chiãưu biãún thiãn cuía haìm säú ta laìm ntn ?
 Nãu cỉûc trë cuía hs naìy ? 
 Ta cáưn xạc âënh cạc giåïi hản naìo?
Tỉì âọ suy ra cạc tiãûm cáûn cuía ÂTHS naìy?
Chụ yï: Âäúi våïi haìm säú naìy ta khäng xẹt âãún tênh läưi, loỵm vaì âiãøm uäún.
Âäư thë luän cọ mäüt tiãûm cáûn âỉïng vaì mäüt tiãûm cáûn ngang?
 Âäư thë haìm säú cọ tênh cháút gç?
Cuíng cäú : 
* Tọm tàõt cạc bỉåïc KSHS
y = (c0, D= ad-bc0). 
* TXÂ: D = R\{}.
* Chiãưu biãún thiãn
y’ = > 0, x
Haìm säú âäưng biãún trãn 
* Cỉûc trë: Haìm säú khäng cọ cỉûc trë.
* Giåïi hản , 
 âỉåìng thàĩng y = 1/2 laì tiãûm cáûn âỉïng
 âỉåìng thàĩng y =1/2 laì tiãûm cáûn ngang
 * Giao âiãøm 2 tiãûm cáûn I(,) laì tám âäúi xỉïng cuía âäư thë.
* TXÂ: D = R\{1}
* Chiãưu biãún thiãn y’ = < 0, x. Haìm säú nghëch biãún trãn (,1) vaì (1,)
*Cỉûc trë: Haìm säú khäng cọ cỉûc trë
* Giåïi hản , âỉåìng thàĩng x = 1 laì tiãûm cáûn âỉïng.
âỉåìng thàĩng y=1 laì tiãûm cáûn ngang.
* Giao âiãøm 2 tiãûm cáûn I(1,1) laì tám âäúi xỉïng cuía âäư thë
3. Mäüt säú haìm phán thỉïc
1. Haìm säú y = (c0, D= ad-bc0)
Vê dủ 1: khaío sạt haìm säú: y = 
1. TXÂ: D = R\{}.
2. Sỉû biãún thiãn
 a. Chiãưu biãún thiãn y’ = > 0, x
Haìm säú âäưng biãún trãn 
 b. Cỉûc trë: Haìm säú khäng cọ cỉûc trë.
 c. Giåïi hản
 âỉåìng thàĩng y = 1/2 laì tiãûm cáûn âỉïng
 âỉåìng thàĩng y =1/2 laì tiãûm cáûn ngang
 d. Baíng biãún thiãn
 x 1/2 
 y ' + +
 y 1/2 
4. Âäư thë
x = 0 y = 3: Âäư thë càõt Oy tải (0,3)
y = 0 x = 3: Âäư thë càõt Ox tải (3,0)
Giao âiãøm 2 tiãûm cáûn I(,) laì tám âäúi xỉïng cuía âäư thë.
Hỉåïng dáùn hoüc sinh chỉïng minh: (Âäøi trủc)
Vê dủ 2: Khaío sạt haìm säú: y = 
1. TXÂ: D = R\{1}
2. Sỉû biãún thiãn
a. Chiãưu biãún thiãn y’ = < 0, x
Haìm säú nghëch biãún trãn (,1) vaì (1,)
b. Cỉûc trë: Haìm säú khäng cọ cỉûc trë
c. Giåïi hản
 , âỉåìng thàĩng x = 1 laì tiãûm cáûn âỉïng.
âỉåìng thàĩng y=1 laì tiãûm cáûn ngang.
d. Baíng biãún thiãn
 x 1 
 y ' - -
 y 1 
 	 1
3. Âäư thë: 
x = 0 y = -1: Âäư thë càõt Oy tải (0,-1).
 y = 0 x = -1: Âäư thë càõt Ox tải (-1,0)
Nháûn xẹt : Giao âiãøm 2 tiãûm cáûn I(1,1) laì tám âäúi xỉïng cuía âäư thë.
Tiết 38 Bài KHẢO SÁT HÀM SỐ
Ngày dạy  ...  tại điểm có hoành độ x, x Ỵ[a,b]. Giả sử rằng thiết diện của mp (g) và (T) có diện tích S(x) là một hàm số của x trên [a,b]. Giả thiết thêm rằng S(x) là hàm số liên tục trên [a,b]. Thể tích vật thể (T) là: V = 
2. Thể tích khối nón, chóp, khối nón cụt và chóp cụt
a) Thể tích khối nón, chóp
- Lập công thức tính thể tích khối nón, chóp co đỉnh S, diện tích đáy B và chiều cao h. Gọi I là hình chiếu của S trên mặt đáy. Chọn trục Ox sao cho S º O, chiều từ S đến I. Đặt h = SI. Mặt phẳng (a) đi qua O vuông góc với Ox, (b) là mặt phẳng đáy, mặt phẳng (g) vuông góc với Ox và cắt Ox tại x. Gọi S(x) là diện tích thiết diện. Khi đó: S(x) = B()22. Thể tích khối nón (chóp) là: V = = .
 b) Thể tích khối nón cụt, chóp cụt
Thể tích khối nón cụt (chóp cụt) có hai đáy là B và B’, có chiều cao H là V = .
3. Thể tích của vật thể tròn xoay.
a. Cho hàm số f(x) liên tục trên [a,b]. 
Gọi (H) là hình phẳng được giới hạn 
bởi (C) : y = f(x). Các đường thẳng 
x = a, x = b và trục Ox. 
	Thể tích vật tròn xoay được tạo
 thành do quay (H) quanh xung quanh Ox là :
Ví dụ: Tính thể tích của vậtt thể sinh ra 
do hình phẳng giới hạn bởi các đường 
y = sinx, y = 0, x = 0 và x = quay xung
 quanh Ox.
V = .
b. Xét đường cong (C) : y = g(y) trong
 đó g(y) là hàm số liên tục / [a, b]. 
Thì thể tích vật tròn xoay tạo ra do 
quay hình phẳng được giới hạn bởi 
(C), các đường thẳng y = a, y = b và trục Oy là:
Ví dụ: Tính thể tích của vật thể sinh ra 
do hình phẳng giới hạn bởi các đường 
y = , y = 2, x = 0 và y = 4 .
V = .
III. Ứng dụng vào vật lý (SGK).
Tiết 69 – 70 – 71 BÀI TẬP ỨNG DỤNG HÌNH HỌC VÀ VẬT LÝ CỦA TÍNH TÍCH PHÂN
Ngày dạy : 
I. Mục tiêu bài dạy.
1. Kiến thức: Hướng dẫn hs vận dụng các công thức tính diện tích và thể tích để giải để giải các bài tập sgk.
2. Kĩ năng : Rèn luyện cho học sinh kỹ năng tính tích phân.
	3. Giáo dục : Giáo dục học sinh tính cẩn thận, có suy luận, khả năng tính toán.
4. Trọng tâm : các bài tập tính diện tích và thể tích.
II. Chuẫn bị của giáo viên và học sinh
Giáo viên: Soạn bài, dụng cụ giảng dạy, phấn màu.
Học sinh: Soạn bài, làm bài tập ở nhà, dụng cụ học tập.
III. Tiến trình bài dạy.
1/ Kiểm tra bài cũ
2/ Nội dung bài mới:
TG
Hoạt động của Thầy
Hoạt động của Trò
Nội dung ghi bảng
Hoạt động 1. Gọi hs giải bt 1 sgk.
 Nêu công thức tính thể tích vật thể tròn xoay sinh ra do hình phẳng giới hạn bởi các đường y = f(x), các đường thẳng x = a, x = b và trục Ox ? 
 Tính diện tích hình phẳng được giới hạn bởi hai dths y = f(x), y = g(x) và các đường thẳng x = a, x = b là : .
 Giả sử trên [a, b] pt f(x) - g(x) = 0 có các nghiệm là a, b ). Khi đó S = ?
 Để tính diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = x2 + 1 và y = -x + 3 ta làm như thế nào ?
GV nhận xét, ghi điểm.
Hoạt động 2. Gọi hs giải bt 2 sgk.
 Để tính diện tích hình phẳng giới hạn bởi các đường y = , x = , y = 0 ta làm ntn?
GV nhận xét, ghi điểm.
Tương tự hướng dẫn hs giải bài tập 2b.
Hoạt động 3 Gọi hs giải bt 3 sgk.
 Để tính diện tích hình phẳng cần tìm là ta phài làm gì ?
Gọi hs lên bảng giải bài tập này.
GV nhận xét, ghi điểm.
Hoạt động 4 Gọi hs giải bt 4 +5 sgk.
 Thể tích vật thể tròn xoay sinh ra do hình phẳng được giới hạn bởi (C) : y = f(x) các đường thẳng x = a, x = b và trục Ox quay xung quanh Ox là V = ? 
 Để tính thể tích vật thể tròn xoay sinh ra do hình phẳng được giới hạn bởi y = 2x - x2, y = 0 ta làm ntn ? 
GV nhận xét, ghi điểm.
Tương tự hướng dẫn học sinh giải các bài tập còn lại.
Hoạt động 5 Gọi hs giải bt 6 sgk.
 Vật thể tròn xoay sinh ra do hình elíp quay xung quanh Ox được coi như vật thể tròn xoay sinh ra bởi hình phẳng được giới hạn bởi các dths nào ?
 Thể tích cần tìm V = ?
GV nhận xét, ghi điểm.
„. Củng cố :
	- - Yêu cầu học sinh nắm vững các công thức tính thể tích, diện tích.
* .
* 
* S = 
* Hoành độ giao điểm của hai dths là nghiệm của pt: x2 + 1 - (-x + 3) = 0 Û x = -2 hoặc x = 1. Vậy diện tích cần tìm là: S = 
* Hoành độ giao điểm của đồ thị hàm số y = cosx với trục Ox trên [; ] là nghiệm của pt: cosx = 0 Ûx = . Vậy diện tích cần tìm là: 
S = 
Ta phải lập pttt của parabol tại M.
* 
Hoành độ giao điểm của dths y = 2x - x2 với trục Ox lànghiệm của pt: 2x - x2 = 0 Û x = 0 hoặc x = 2.
Vậy thể tích cần tìm là: 
V = .
* Bởi y = .
Bài tập 1. 
a) S = 
b) Hoành độ giao điểm của hai dths là nghiệm của pt: x2 + 1 - (-x + 3) = 0 Û x = -2 hoặc x = 1. Vậy diện tích cần tìm là: 
S = 
d. Hoành độ giao điểm của hai đồ thị hàm số y = 4x - x2 với trục Ox là nghiệm của pt: 4x - x2 = 0 Û x = 0 hoặc x = 4. Vậy diện tích cần tìm là: 
S = .
e. Diện tích cần tìm S = .
f. Diện tích cần tìm S = .
2. a) Hoành độ giao điểm của đồ thị hàm số y = cosx với trục Ox trên [; ] là nghiệm của pt: cosx = 0 Ûx = . Vậy diện tích cần tìm là: S = .
b) Hoành độ giao điểm của đồ thị hàm số y = x(x-1)(x-2) với trục Ox ] là nghiệm của pt: x(x-1)(x-2) = 0 Ûx = 1 hoặc x = 0 hoặc x = 2. Vậy diện tích cần tìm là: 
S =
.
3. Phương trình tiếp tuyến của (P) tại M là: y = 4x - 7. Diện tích hình phẳng giới hạn bởi (P), tiếp tuyến của (P) tại M và trục tung là: 
.
4. a. Hoành độ giao điểm của dths y = 2x - x2 với trục Ox lànghiệm của pt: 2x - x2 = 0 Û x = 0 hoặc x = 2.
Vậy thể tích cần tìm là: 
V = 
b.Thể tích cần tìm là: 
V = 
5.Thể tích cần tìm là: 
V = 
 6. Phương trình chính tắc của elíp: .
Û . Thể tích cần tìm là: V = = .
Tiết 72 ÔN TẬP CHƯƠNG III
Ngày dạy : 
I. Mục tiêu bài dạy.
1. Kiến thức: Hướng dẫn hs hệ thống, ôn tập lại các kiến thức lý thuyết và các phương pháp giải toán trong chương III.
2. Kĩ năng : Rèn luyện cho học sinh kỹ năng tính tích phân, thính thể tích các vật thể và diện tích các hình phẳng.
	3. Giáo dục : Giáo dục học sinh tính cẩn thận, có suy luận, khả năng tính toán.
4. Trọng tâm : các bài tập tính diện tích và thể tích.
II. Chuẫn bị của giáo viên và học sinh
Giáo viên: Soạn bài, dụng cụ giảng dạy, phấn màu.
Học sinh: Soạn bài, làm bài tập ở nhà, dụng cụ học tập.
III. Tiến trình bài dạy.
1/ Kiểm tra bài cũ : Câu 1: Viết công thức tính phân tứng phần, Áp dụng tính: 
2/ Nội dung bài mới:
TG
Hoạt động của Thầy
Hoạt động của Trò
Nội dung ghi bảng
 Nhắc lại công thức tính tích phân từng phần
a) Đặt 
b) Đặt 
c) Đặt 
f) Đặt 
g) Đặt 
h) Đặt 
 (dạng t.phân lập lại 2 lần)
+
+
+
+
	1 .Dùng phương pháp tích phân từng phần tính các tích phân sau đây :
a) I = 
b) J = 
c) K = 
f) N = 
g) P = 
h) Q =
Chú ý: Khi đổi biến số thì phải đổi cận.
a) Đặt t = x2 + 9
b) Đặt t = lnx
c) Đặt t = x + 
d) Đặt t = 1 + lnx
e) Đặt t = 1 + 2 sin2x
Bài 2: Dùng phương pháp đổi biến số tính các tích phân:
a) 
b) 
c) 
d) 
e) 
Củng cố:
	* Khi đổi biến số thì phải đổi cân
	* Các dạng tích phân từng phần sau đây cần phải chú ý :
Dặn dò:* Ôn lại các công thức tính diện tích hình phẳng , thể tích các vật tròn xoay.
* Chuẩn bị các bài tập mà giáo viên đã ra
Tiết 73 ÔN TẬP CHƯƠNG III
Ngày dạy :
I. Mục tiêu bài dạy.
1. Kiến thức: Hướng dẫn hs hệ thống, ôn tập lại các kiến thức lý thuyết và các phương pháp giải toán trong chương III.
2. Kĩ năng : Rèn luyện cho học sinh kỹ năng tính tích phân, thính thể tích các vật thể và diện tích các hình phẳng.
	3. Giáo dục : Giáo dục học sinh tính cẩn thận, có suy luận, khả năng tính toán.
4. Trọng tâm : các bài tập tính diện tích và thể tích.
II. Chuẫn bị của giáo viên và học sinh
Giáo viên: Soạn bài, dụng cụ giảng dạy, phấn màu.
Học sinh: Soạn bài, làm bài tập ở nhà, dụng cụ học tập.
III. Tiến trình bài dạy.
1/ Kiểm tra bài cũ : Câu 1: Phát biểu các công thức tính diện tích hình phẳng đã học.
	Áp dụng: Tính diện tích hình phẳng giới hạn bởi (C) : y = và các đường thẳng t y = 0, x = 0, x = 2.
	 Câu 2: Viết công thức tính thể tích của vật tròn xoay.
	Áp dụng : Tính thể tích khối tròn xoay tạo thành do hình phẳng giới hạn bởi các đường y = cosx, y = 0, x = 0, x = p quay 1 vòng quanh Ox.
2/ Nội dung bài mới:
Hoạt động của thầy
Hoạt động của trò
Ghi bảng
Hướng dẫn : 
- S = S1 + S2
+ S1 = dt (AOC) = 
+ Chú ý 
Cũng có thể thấy rằng :
 thì xAB ³ xP
Do đó điện tích hình phẳng cũng có thể tính theo công thức :
B
C
A
Bài tập: Tính diện tích hình phẳng được giới hạn bởi (P):y2 = 4x và đường thẳng AB với A(1, -2), B(4, 4)
Giải 
. (AB) : y = 2x + 4
. (P) : y = ± 2
S = 2= ?
hoặc : S = 
- Gọi học sinh xác định các giao điểm của (C) và (P)
2
- Giải hệ : 
- Có thể tính S như sau :
 thì 
Nên S = 
- Để tìm nguyên hàm ta dùng phương pháp nguyên hàm từng phần.
Bài 2 Tính diện tích hình phẳng giới hạn bởi
(C) : x2 + y2 = 8 và (P) : y2 = 2x
Giải (C) : y = ± 
(P) : y = ± 
S = 2
hoặc S = 
Hướng dẫn 
. Các câu a), b), c) VOx đều áp dụng công thức:
VOx = 
c) VOy tính như sau :
B
A
- VOy = V1 – V2
+ V1 thể tích hình trụ có bk đáy = chiều cao = 1
V1 = p
+ V2 thể tích vật thể sinh ra bởi “tam giác cong OAB” quay quanh Oy.
V2 = 
V = 
Chú ý
Có thể tính VOy như sau :
VOy = 2p
Bài 3
	Tính thể tích vật thể tròn xoay sinh ra bởi hình phẳng giới hạn bởi các đường :
a) y = , x= 1, x = 2, y = 0 quay quanh Ox.
b) y = Lnx, x = 1, x = 2, y = 0 quay quanh Ox.
c) y2 = x2 , y = 0, x = 1 khi nó quay xung quanh.
- Trục x.
- Trục y.
Kết quả 
a) pe2
b) 2p (Ln22 – Ln2 + 1)
c) 
Củng cố
	- Học sinh cần chú ý các cách tính diện tích hình phẳng như ở bài 1, 2 có nội dung :”Giả sử các hàm số x = f(y), x = g(y) liên tục / [a, b] và f(y) ³ g(y) thì dt hình phẳng được giới hạn bởi các đường (C) : x = f(y), (C’) : x = g(y) và các đường thẳng y = a, y = b là :
Dặn dò: Chuẩn bị tiết sau
. Học sinh xem lại các phần đã ôn tập.
. Chuẩn bị kiểm tra 1 tiết
KiĨm tra 1 tiÕt
M«n: Gi¶i tÝch 12
(Thêi gian: 45 phĩt)
§Ị 1.
C©u 1: TÝnh c¸c tÝch ph©n sau:
a) b) c) .
C©u 2. TÝnh diƯn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®­êng:
a) y = x3333fgrg®fgfg®fgfgdqqqq3 - 3x2 vµ trơc Ox.
b) y2 - 2y + x = 0 vµ x + y = 0.
C©u 3. TÝnh thĨ tÝch vËt thĨ sinh ra do h×nh ph¼ng giíi h¹n bëi c¸c ®­êng: y = x2 - 3x, 
y = 0, x = 1, x = 2 quay xung quanh Ox.

Tài liệu đính kèm:

  • docGT35-74.doc