Giáo án lớp 12 môn Giải tích - Tiết 10, 11 - Bài 4: Đường tiệm cận của đồ thị hàm số

Giáo án lớp 12 môn Giải tích - Tiết 10, 11 - Bài 4: Đường tiệm cận của đồ thị hàm số

1. Về kiến thức:

– Nắm vững định nghĩa tiệm cận đứng, tiệm cận ngang, tiệm cận xiên của đồ thị hàm số.

– Nắm được cách tìm các đường tiệm cận đứng, tiệm cận ngang, tiệm cận xiên của đồ thị hàm số.

2. Về kỷ năng:

– Thực hiện thành thạo việc tìm các đường tiệm cận của đồ thị hàm số.

– Nhận thức được hàm phân thức hữu tỉ (không suy biến)có những đường tiệm cận nào.

3. Về tư duy thái độ:

– Tự giác, tích cực trong học tập.

– Chủ động phát hiện, chiếm lĩnh tri thức mới, biết quy lạ về quen, có tinh thần hợp tác xây dựng cao.

 

doc 5 trang Người đăng haha99 Lượt xem 1284Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án lớp 12 môn Giải tích - Tiết 10, 11 - Bài 4: Đường tiệm cận của đồ thị hàm số", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tiết :10-11	 Ngày soạn: .. . . . . . . . . .
§ 4 ĐƯỜNG TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ
I. MỤC TIÊU:
Về kiến thức:
– Nắm vững định nghĩa tiệm cận đứng, tiệm cận ngang, tiệm cận xiên của đồ thị hàm số.
– Nắm được cách tìm các đường tiệm cận đứng, tiệm cận ngang, tiệm cận xiên của đồ thị hàm số.
Về kỷ năng:
– Thực hiện thành thạo việc tìm các đường tiệm cận của đồ thị hàm số.
– Nhận thức được hàm phân thức hữu tỉ (không suy biến)có những đường tiệm cận nào.
Về tư duy thái độ:
Tự giác, tích cực trong học tập.
Chủ động phát hiện, chiếm lĩnh tri thức mới, biết quy lạ về quen, có tinh thần hợp tác xây dựng cao.
II. CHUẨN BỊ CỦA THẦY VÀ TRÒ:
Chuẩn bị của thầy :
Giáo án, bảng phụ, phiếu học tập 
Chuẩn bị của trò:
Sách giáo khoa. 
Kiến thức về giới hạn. 	
III. PHƯƠNG PHÁP DẠY HỌC: 
	Dùng các phương pháp gợi mở, vấn đáp, nêu vấn đề và giải quyết vấn đề, hoạt động nhóm
IV. TIẾN TRÌNH BÀI HỌC:
Ổn định tổ chức: kiểm tra sỉ số, 
Kiểm tra bài cũ :
	Câu hỏi 1: Tính các giới hạn sau:
 ...,..., ...,...
	Câu hỏi 2: Tính các giới hạn sau:
	a. 	b. 
	 + Cho học sinh trong lớp nhận xét câu trả lời của bạn.
	+ Nhận xét câu trả lời của học sinh, kết luận và cho điểm. 
Bài mới: 
HĐ1: Hình thành định nghĩa tiệm cận đứng , tiệm cận ngang
.
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
+ Treo bảng phụ có vẽ đồ thị của hàm số y =.Theo kết quả kiểm tra bài cũ ta có 
Điều này có nghĩa là khoảng cách MH = |y| từ điểm M trên đồ thị đến trục Ox dần về 0 khi M trên các nhánh của hypebol đi xa ra vô tận về phía trái hoặc phía phải( hình vẽ). lúc đó ta gọi trục Ox là tiệm cận ngang của đồ thị hàm số y = .
+Cho HS định nghĩa tiệm cận ngang.(treo bang phụ vẽ hình 1.7 trang 29 sgk để học sinh quan sát)
+Chỉnh sửa và chính xác hoá định nghĩa tiệm cận ngang.
+Tương tự ta cũng có:
Nghĩa là khoảng cách NK = |x| từ N thuộc đồ thị đến trục tung dần đến 0 khi N theo đồ thị dần ra vô tận phía trên hoặc phía dưới.Lúc đó ta gọi trục Oy là tiệm cận đứng của đồ thị hàm số y = .
- Cho HS định nghĩa tiệm cận đứng.( treo bảng phụ hình 1.8 trang 30 sgk để HS quan sát)
- GV chỉnh sửa và chính xác hoá định nghĩa.
- Dựa vào định nghĩa hãy cho biết phương pháp tìm tiệm cận ngang và tiệm cận đứng của đồ thị hàm số.
+ HS quan sát bảng phụ.
+ Nhận xét khi M dịch chuyển trên 2 nhánh của đồ thị qua phía trái hoặc phía phải ra vô tận thì MH = dần về 0
Hoành độ của M thì MH = |y| .
HS đưa ra định nghĩa.
+Hs quan sát đồ thị và đưa ra nhận xét khi N dần ra vô tận về phía trên hoặc phía dưới thì khoảng cách NK = |x| dần về 0.
+HS đưa ra định nghĩa tiệm cận đứng.
+HS trả lời.
1. Đường tiệm cận đứng và đường tiệm cận ngang.
* Định nghĩa 1:SGK
* Định nghĩa 2: SGK
HĐ2 :Tiếp cận khái niệm tiệm cận đứng và tiệm cận ngang.
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
- Cho HS hoạt động nhóm.
- Gọi đại diện 2 nhóm lên bảng trình bày bài tập 1,2 của VD 1.
- Đại diện các nhóm còn lại nhận xét.
- GV chỉnh sữa và chính xác hoá.
- Cho HS hoạt động nhóm. 
Đại diện nhóm ở dưới nhận xét.
+ câu 1 không có tiệm cận ngang.
+ Câu 2 không có tiệm cận ngang.
- Qua hai VD vừa xét em hãy nhận xét về dấu hiệu nhận biết phân số hữu tỉ có tiệm cận ngang và tiệm cận đứng.
+ Đại diện nhóm 1 lên trình bày câu 1, nhóm 2 trình bày câu 2
+Đại diện hai nhóm lên giải..
+HS ; Hàm số hữu tỉ có tiệm cận ngang khi bậc của tử nhỏ hơn hoặc bằng bậc của mẫu, có tiệm cận đứng khi mẫu số có nghiệm và nghiệm của mẫu không trùng nghiệm của tử.
Ví dụ 1: Tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số.
1, y = 
2, y = 
Ví dụ 2:Tìm tiệm cận đứng và tiệm cận ngang của các hàm số sau:
1, y = 
2 , y = .
Tiết 2	HĐ3: Hình thành và tiếp cận khái niệm tiệm cận xiên:
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
- Treo bảng phụ vẽ hình 1.11 trang 33 SGK.
+ Xét đồ thị (C) của hàm số y = f(x) và đường thẳng (d) y = ax+ b (a ) . Lấy M trên (C ) và N trên (d) sao cho M,N có cùng hoành độ x.
+ Hãy tính khơảng cách MN.
+ Nếu MN khi x( hoặc x ) thì ( d) được gọi là tiệm cận xiên của đồ thị (d).
- Từ đó yêu cầu HS định nghĩa tiệm cận xiên của đồ thị hàm số.
- GV chỉnh sửa và chính xác hoá .
 +Lưu ý HS: Trong trường hợp hệ số a của đường thẳng 
y = ax + b bằng 0 mà (hoặc ) Điều đó có nghĩa là (hoặc )
Lúc này tiệm cận xiên của đồ thị hàm số cũng là tiệm cận ngang.
 Vậy tiệm cận ngang là trường hợp đặc biệt của tiệm cận xiên.
+Gợi ý học sinh dùng định nghĩa CM.Gọi một học sinh lên bảng giải.
Gọi 1 HS nhận xét sau đó chính xác hoá.
Qua ví dụ 3 ta thấy hàm số y = có tiệm cận xiên là y = 2x + 1 từ đó đưa ra dấu hiệu dự đoán tiệm cận xiên của một hàm số hữu tỉ.
+ Cho HS hoạt động nhóm:
Gợi ý cho HS đi tìm hệ số a,b theo chú ý ở trên.
+ Gọi HS lên bảng giải
Cho HS khác nhận xét và GV chỉnh sửa , chính xác hoá.
+ HS quan sát hình vẽ trên bảng phụ.
+HS trả lời khoảng cách MN = |f(x) – (ax + b) | .
+HS đưa ra đinh nghĩa
+HS chứng minh.
Vì y – (2x +1) = khi và x nên đường thẳng y = 2x + 1 là tiệm cận xiên của đồ thị hàm số đã cho (khi x và x )
HS lên bảng trình bày lời giải.
2,Đường tiệm cận xiên:
Định nghĩa 3(SGK)
Ví dụ 3: Chứng minh rằng đường thẳng y = 2x + 1 là tiệm cận xiên của đồ thị hàm số y = 
*Chú ý: về cách tìm các hệ số a,b của tiệm cận xiên.
CM (sgk)
Hoặc
Ví dụ 4:Tìm tiệm cận xiên của đồ thị hàm số sau:
1/y=
2/ y = 2x + 
Củng cố 3’ 
* Giáo viên cũng cố từng phần:
- Định nghĩa các đường tiệm cận.
- Phương pháp tìm các đường tiệm cận .
Hướng dẫn học bài ở nhà và ra bài tập về nhà: (2’)
	+ Nắm vững các kiến thức đã học: khái niệm đường tiệm cận và phương pháp tìm tiệm cận của hàm số, dấu hiệu hàm số hữu tỉ có tiệm cận ngang , tiệm cận đứng, tiệm cận xiên. Vận dụng để giải các bài tập SGK.
V. Phụ lục:
1. Phiếu học tập: 
PHIẾU HỌC TÂP 1
Tìm tiệm cận đứng và tiệm cận ngang của đồ thị hàm số.
1, y = 
2, y = 
PHIẾU HỌC TÂP 2
Tìm tiệm cận đứng và tiệm cận ngang của các hàm số sau:
1, y = 
2 , y = .
PHIẾU HỌC TÂP 3
 Chứng minh rằng đường thẳng y = 2x + 1 là tiệm cận xiên của đồ thị hàm số y = 
PHIẾU HỌC TÂP 4
Tìm tiệm cận xiên của đồ thị hàm số sau:
1/y=
2/ y = 2x + 
2/Bảng phụ: 
Hình 1.6 trang 28 SGK.
Hình 1.7 trang 29 SGK
Hình 1.9 trang 30 SGK 
Hình 1.11 trang 33 SGK.
Rút kinh nghiệm :
. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Tài liệu đính kèm:

  • docT10_CI.doc