1. Về kiến thức: Học sinh nắm được : khái niệm về khối đa diện lồi và khối đa diện đều, nhận biết năm loại khối đa diện đều.
2. Về kĩ năng: nhận biết được khối đa diện lồi và khối đa diện đều, biết cách nhận biết năm loại khối đa diện đều, chứng minh được một số tính chất của khối đa diện đều.
3. Về tư duy: Biết qui lạ về quen, tư duy các vấn đề của toán học một cách logic và hệ thống.
4. Về thái độ: Cẩn thận chính xác trong lập luận , tính toán và trong vẽ hình.
Tieát CT : 04 Ngaøy daïy : LUYỆN TẬP I . MUÏC TIEÂU Về kiến thức: Học sinh nắm được : khái niệm về khối đa diện lồi và khối đa diện đều, nhận biết năm loại khối đa diện đều. Về kĩ năng: nhận biết được khối đa diện lồi và khối đa diện đều, biết cách nhận biết năm loại khối đa diện đều, chứng minh được một số tính chất của khối đa diện đều. Về tư duy: Biết qui lạ về quen, tư duy các vấn đề của toán học một cách logic và hệ thống. Về thái độ: Cẩn thận chính xác trong lập luận , tính toán và trong vẽ hình. II . CHUAÅN BÒ 1. Giaùo vieân : Giaùo aùn , thöôùt thaúng 2. Hoïc sinh : laøm baøi tröôùc ôû nhaø III. PHÖÔNG PHAÙP DAÏY HOÏC - Gôïi môû , ñaët vaán ñeà IV . TIEÁN TRÌNH DAÏY HOÏC 1 . OÅn ñònh toå chöùc lôùp : Ñieåm danh só soá lôùp 2 . Kieåm tra baøi cuõ : Nêu khái niệm khối đa diện lồi và khối đa diện đều 3. Daïy baøi môùi : Hoaït ñoäng cuûa thaày vaø troø Noäi dung caàn ñaït GV yêu cầu HS lên vẽ hình và gợi mở cho HS làm bài độ dài các cạnh của hình bát diện đều? Diện tích mỗi mặt của (H) bằng? diện tích mỗi mặt của (H’) bằng => STP(H) = ? STP(H’) = ? Gợi ý cho HS trình bày Gợi ý cho HS trình bày Bài 2: sgk Đặt a là độ dài cạnh của hình lập phương (H), khi đó độ dài các cạnh của hình bát diện đều là . Diện tích mỗi mặt của (H) bằng a2; diện tích mỗi mặt của (H’) bằng Diện tích toàn phần của (H) là : 6a2 Diện tích toàn phần của (H’) là : Vậy tỉ số diện tích toàn phần của (H) và (H’) là Bài 3: SGK Gọi (H) là tứ diện đều cạnh a. Tâm các mặt của (H) tạo thành một tứ diện (H’) có sáu cạnh đều bằng . Do đó (H’) là tứ diện đều Bài 4: Sgk Ta có AE =EF, CA=CF, BA=BF, DA=DF =>bốn điểm B,C,D,E cùng thuộc mặt phẳng trung trực của AF Trong mặt phẳng đó BE = ED = DC =CB => BEDC là hình thoi nên hai đường chéo BD, EC giao nhau tại trung điểm O của mỗi đường. Tương tự ta có À và BD cùng giao nhau tại O Mà tứ giác ABCD là hình thoi => AF vuông góc BD Tương tự ta chứng minh được AF vuông góc với EC và BD vuông góc EC 4 . Cuûng coá : Củng cố lại các kiến thức đã học trong bài Gv nhắc lại các khái niệm và quy tắc trong bài để Hs khắc sâu kiến thức. 5 . Daën doø : E Xem laïi baøi hoïc vaø ñoïc tröôùc baøi KHÁI NIỆM VỀ THỂ TÍCH KHỐI ĐA DIỆN V . RUÙT KINH NGHIEÄM
Tài liệu đính kèm: