ChuongIII §1
Ngày soạn: 11/08/2008 HỆ TOẠ ĐỘ TRONG KHÔNG GIAN
(3 tiết)
I. Mục tiêu:
Về kiến thức:
- Biết các khái niệm hệ toạ độ trong không gian, toạ độ của một vectơ, toạ độ của điểm, biểu thức toạ độ của các phép toán vectơ, khoảng cách giữa hai điểm.
- Biết khái niệm và một số ứng dụng của tích có hướng.
- Biết phương trình mặt cầu.
Về kĩ năng:
- Tính được toạ độ của tổng, hiệu hai vectơ, tích của một vectơ với một số, tích vô hướng của hai vectơ.
- Tính được tích có hướng của hai vectơ. Tính được diện tích hình bình hành và thể tích khối hộp bẳng cách dùng tích có hướng.
- Tính được khoảng cách giữa hai điểm có toạ độ cho trước.
- Xác định được toạ độ của tâm và tính được bán kính của mặt cầu có phương trình cho trước.
- Viết được phương trình mặt cầu.
ChuongIII §1 Ngày soạn: 11/08/2008 HỆ TOẠ ĐỘ TRONG KHÔNG GIAN (3 tiết) Mục tiêu: Về kiến thức: Biết các khái niệm hệ toạ độ trong không gian, toạ độ của một vectơ, toạ độ của điểm, biểu thức toạ độ của các phép toán vectơ, khoảng cách giữa hai điểm. Biết khái niệm và một số ứng dụng của tích có hướng. Biết phương trình mặt cầu. Về kĩ năng: Tính được toạ độ của tổng, hiệu hai vectơ, tích của một vectơ với một số, tích vô hướng của hai vectơ. Tính được tích có hướng của hai vectơ. Tính được diện tích hình bình hành và thể tích khối hộp bẳng cách dùng tích có hướng. Tính được khoảng cách giữa hai điểm có toạ độ cho trước. Xác định được toạ độ của tâm và tính được bán kính của mặt cầu có phương trình cho trước. Viết được phương trình mặt cầu. Chuẩn bị của GV và HS: Giáo viên: Bài giảng, bảng phụ, phiếu học tập Học sinh: Chuẩn bị bài trước ở nhà. Phương pháp: Kết hợp các phương pháp gợi mở, vấn đáp, thuyết giảng và hoạt động nhóm. Tiến trình bài học: 1. Ổn định lớp: 2. Kiểm tra bài cũ: 3. Bài mới: Tiết 1: Hoạt động 1: Giới thiệu hệ trục tọa độ trong không gian Tgian Hoạt động GV Hoạt động HS Ghi bảng 5’ - Hd: trên cơ sở hệ trục toạ độ 2 chiều trong mặt phẳng, GV vào trực tiếp định nghĩa hệ trục trong không gian 3 chiều (Vẽ hệ trục toạ độ và các vectơ đơn vị trên bảng) H1: Cho HS trả lời - Gợi ý: dùng tích vô hướng phẳng - Kết hợp SGK, theo dõi hướng dẫn của GV - Nhớ lại tích vô hướng phẳng giải quyết được vấn đề. 1. Hệ trục toạ độ trong không gian: Đn: SGK - Thuật ngữ và kí hiệu - Hoạt động 2: Giới thiệu toạ độ của vectơ Tgian Hoạt động GV Hoạt động HS Ghi bảng 15’ - Gợi ý: Nhớ lại quan hệ giữa một vectơ bất kì với ba vectơ không đồng phẳng. - Áp dụng kết quả cho vectơ bất kì và , , Þ khái niệm H: Cho biết toạ độ của , , ? - Cho HS xét H2? - Gợi ý: Hãy phân tích theo , , và dùng kết quả phẳng - Hd HS đọc ví dụ 1 - Gợi ý c/m tính chất 1, 5, 7 - Nhắc cụ thể t/c 6 - Một vectơ bất kì luôn biểu diễn được theo 3 vectơ không đồng phẳng và sự biễu diễn đó là duy nhất. - Có Nên = (1; 0; 0) - Tương tự với , - Nhìn nhận được vấn đề nhờ , , 2. Toạ độ của vectơ: a/ Đn: SGK b/ Tọa độ của vectơ tổng, hiệu, tích của vectơ với một số: SGK Hoạt động 3: Giới thiệu toạ độ của điểm Tgian Hoạt động GV Hoạt động HS Ghi bảng 10’ - Trên cơ sở toạ độ vectơ, kết luận về toạ độ một điểm H3: Từ cách xây dựng toạ độ điểm, cho HS trả lời H3 H4: Cho HS trả lời H4 và lấy ví dụ cụ thể - Gợi ý: M Î x’Ox, hãy phân tích theo , , ? - Khắc sâu cho HS kiến thức trên HĐ1: Dựa vào SGK cho HS trả lời. - Trả lời các câu hỏi H3, H4 theo yêu cầu của GV - = x. + 0. + 0. Nên M (x; 0; 0) 3. Toạ độ của điểm: SGK Hoạt động 4: Liên hệ giữa toạ độ của vectơ và toạ độ hai điểm mút Tgian Hoạt động GV Hoạt động HS Ghi bảng 8’ - Cho nhắc lại các kết quả liên quan trong mặt phẳng. Từ đó dẫn đến kết quả tương tự trong không gian. HĐ2: Cho HS thực hiện. - Gợi ý: I là trung điểm đoạn AB, ta có: và dùng vectơ bằng nhau. - Tương tự cho b và c - Thức hiện yêu cầu của GV - Nhận biết được từ gợi ý và giải quyết được bài toán. 4. Liên hệ giữa toạ độ của vectơ về toạ độ 2 điểm mút: SGK 7’ - Dựa vào lời giải SGK, hướng dẫn HS theo hệ thống câu hỏi: 1/ Từ 4 điểm đã cho, hãy lấy ra 3 vectơ cùng gốc? 2/ Ba vectơ trên đồng phẳng khi nào? Từ đó hãy rút ra điều kiện để ba vectơ không đồng phẳng? 3/ Câu b dùng tính chất 7. 4/ Nhắc lại định nghĩa hình chóp đều? Khi D.ABC là hình chóp đều suy được H là trọng tâm t/giác ABC. - Dựa vào lời giải SGK và theo dõi, trả lời các câu hỏi của GV. Ví dụ 2: (dùng bảng phụ đã ghi ví dụ trong SGK) Tiết 2: Hoạt động 5: Tích có hướng của hai vectơ Tgian Hoạt động GV Hoạt động HS Ghi bảng 8’ - Dẫn dắt như SGK và vào ĐN - Cho đọc ví dụ 3 - Cho thêm ví dụ: Cho ba điểm A(1; 2; 1), B(-1; 0; 2), C(2; 1; 3). Tìm ? - Cho một HS đứng tại chỗ trình bày, GV ghi lên bảng. - Khắc sâu lại cách trình bày cho HS. - Theo dõi HD về ví dụ 3 - Làm việc với ví dụ mới - HS được gọi đứng tại chỗ trình bày ví dụ. - Dùng định nghĩa kiểm tra HĐ3. 5. Tích có hướng của hai vectơ: a/ ĐN: SGK Hoạt động 6: Xét các tính chất Tgian Hoạt động GV Hoạt động HS Ghi bảng 8’ - Cho = (a; b; c) và = (a’; b’; c’). Tính = ? ? Þ kết luận - Các tính chất 2, 3 cho HS đọc SGK * Chú ý: HD: Hãy nhắc lại công thức tính diện tích tam giác liên quan đến h/s sin, và liên hệ với tính chất 2, từ đó suy ra diện tích hình bình hành OABC. - Cho ví dụ cụ thể để HS làm việc. - GV kiểm tra, đánh giá (Phiếu học tập) - 1 HS lên bảng trình bày c/m tính chất 1 - Các HS còn lại độc lập làm việc. - Xem sách các t/c còn lại. - Làm việc theo nhóm và cử đại diện trình bày. - Lớp nhận xét, đánh giá b/ Tính chất: SGK Hoạt động 7: Ứng dụng của tích có hướng Tgian Hoạt động GV Hoạt động HS Ghi bảng 10’ - Dẫn dắt theo SGK và đi đến công thức. HĐ4: dùng tính chất 1 của tích có hướng, dẫn dắt HS giải quyết hoạt động. - Theo dõi và tiếp nhận kiến thức. c/ Ứng dụng của tích có hướng: - Diện tích hình bình hành ABCD: S = - Thể tích khối hộp: V = (- Ghi kết quả cần ghi nhớ) 4’ 5’ 15’ - Các câu hỏi gợi ý: a/ Hãy nêu cách c/m bốn điểm A, B, C, D không đồng phẳng? (Dùng kết quả đã học nào?) b/ Có thể dựng được hình bình hành có 3 đỉnh là A, B, C? Tính diện tích của nó? Từ đó suy ra diện tích t/giác ABC và đường cao? H: Hãy nêu công thức tính diện tích tam giác có liên quan r? Þ tính r? c, d/ Yêu cầu HS giải theo nhóm và báo kết quả (2 nhóm giải c, 2 nhóm giải d) - Gợi ý: dùng t/chất 6 tích có hướng và chú ý góc trong tam giác khác góc giữa hai đường thẳng. - Làm việc theo gợi ý, hướng dẫn của GV. - Suy nghĩ phát hiện được , , không đồng phẳng. SDABC = S = p.r - Làm việc theo nhóm và cử đại diện báo kết quả. Ví dụ 4: Tiết 3: Hoạt động 8: Phương trình mặt cầu Tgian Hoạt động GV Hoạt động HS Ghi bảng 5’ - Cho nhắc lại định nghĩa mặt cầu và cho tiếp cận SGK để đi đến pt mặt cầu tâm I, bán kính R - Theo dõi GV và lĩnh hội kiến thức 6. Phương trình mặt cầu: SGK 10’ HĐ5: Cho HS tự hoạt động H: Tại sao M thuộc mặt cầu thì ? HĐ6: Cho HS tự hoạt động - Dẫn dắt HS đến pt (1) Chú ý phần đảo - Dẫn dắt (1) về (2) và cho nhận xét điều kiện nghiệm của (2) Þ nhìn nhận tâm và bán kính - Kết luận dạng khai triển của phương trình mặt cầu. * Chú ý: Trong dạng khai triển hệ số của x2, y2, z2 bằng nhau và không có số hạng chứa xy, yz, zx (điều kiện cần) - Tự hoạt động và báo kết quả - Biết được DA1MA2 vuông tại M. - Tự hoạt động và báo kết quả. - Theo dõi và phát hiện kiến thức theo sự hướng dẫn của GV. Dạng khai triển của phương trình mặt cầu: SGK 10’ HĐ7: Phân cho mỗi nhóm 1 câu. - Yêu cầu HS tự làm - Làm việc theo nhóm và báo kết quả Hoạt động 9: Củng cố Tgian Hoạt động GV Hoạt động HS Ghi bảng 20’ Cho HS nhắc lại từng phần và ghi tóm tắt lên bảng: - Toạ độ vectơ tổng, hiệu, tích vectơ với một số, mođun góc giữa hai vectơ - Khoảng cách giữa hai điểm. - Toạ độ của vectơ có hướng, tính chất. - Công thức tính diện tích hình bình hành, thể tích hình hộp. - Nêu phương trình mặt cầu cả hai dạng. - Các dạng toán thường gặp. Cho bài tập tổng hợp để hình thành các kỹ năng cần thiết. - Trả lời các nội dung yêu cầu của GV. - Các HS khác theo dõi phần trả lời của bạn và góp ý. - Thực hiện giải bài tập theo nhóm để hình thành kỹ năng * Nội dung toàn bài: * Bài tập tổng hợp: Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(;;), B(;;), C(;;), D(;;). a/ Chứng minh A, B, C, D là bốn đỉnh của tứ diện. b/ Tính S∆ABC. c/ Tính thể tích của tứ diện. d/ Tính đường cao của tứ diện xuất phát từ C. e/ Tính các góc của các cặp cạnh đối diện của tứ diện ABCD. f/ Viết p/t mặt cầu qua ba điểm A, B, C có tâm nằm trên mặt phẳng Oxy. ChuongIII§1 BÀI TẬP HỆ TRỤC TOẠ ĐỘ Soạn: 12/08/2008 CT nâng cao Số tiết: 2 I. Mục tiêu +Về kiến thức Nắm và nhớ định nghĩa toạ độ vectơ, của điểm đối với một hệ toạ độ xác định trong không gian, pt mặt cầu. khắc sâu các công thức biểu thị quan hệ giữa các vectơ, biểu thức toạ độ của các vectơ, công thức về diện tích, thể tích khối hộp và tứ diện, công thức biểu thị mối quan hệ giữa các điểm. +Về kĩ năng Giải được các bài toán về điểm, vectơ đồng phẳng, không đồng phẳng, toạ độ của trung điểm, trọng tâm tam giác ... Vận dụng được phương pháp toạ độ để giải các bài toán hình không gian. Viết được pt mặt cầu với các điều kiện cho trước, xác định tâm và tính bán kính mặt cầu khi biết pt của nó. +Về tư duy và thái độ Hình thành tư duy logic, lập luận chặc chẽ và biết quy lạ về quen. Tích cực tìm tòi, sáng tạo II.Chuẩn bị của giáo viên và học sinh Giáo viên: giáo án, sgk Học sinh: giải trước bài tập ở nhà, ghi lại các vấn đề cần trao đổi, sgk, các dụng cụ học tập liên quan. III.Phương pháp Gợi mở, vấn đáp và đan xen hoạt động nhóm IV.Tiến trình bài dạy Ổn định lớp 1 phút Bài cũ: (10 phút) Gọi 3 hs lên bảng thực hiện các câu hỏi Câu hỏi 1: Định nghĩa tích có hướng của hai vectơ Áp dụng: cho hai vectơ . Tính Câu hỏi 2: Cho 4 điểm A(1;0;0), B(0;1;0), C(0;0;1), D(-2;1;-2). Chứng minh rằng A, B, C, D là bốn đỉnh của một tứ diện. Câu hỏi 3: Phương trình x2 + y2 + z2 – 4x + 7y- 8z -5 = 0 có phải là pt mặt cầu không? Nếu là pt mặt cầu thì hãy xác định tâm và tính bán kính của nó. Bài mới: chia lớp học thành 4 -5 nhóm nhỏ Thời gian H.động của giáo viên H.động của học sinh Ghi bảng HĐ 1: giải bài tập 3 trang 81 sgk 7’ y/c nhắc lại công thức tính góc giữa hai vectơ? y/c các nhóm cùng thực hiện bài a và b gọi 2 nhóm trình bày bài giải câu a và câu b Các nhóm khác theo dõi và nhận xét Gv tổng kết lại toàn bài 1 hs thực hiện Hs trả lời câu hỏi Các nhóm làm việc Đại diện 2 nhóm trình bày nhận xét bài giải Lắng nghe, ghi chép Bài tập 3: a) b) HĐ 2: giải bài tập 6 trang 81 sgk 7’ Gọi M(x;y;z), M chia đoạn AB theo tỉ số k1: à toạ độ =? và liên hệ đến hai vectơ bằng nhau ta suy ra được toạ độ của M=? Y/c các nhóm cùng thảo luận để trình bày giải Gọi đại diện một nhóm lên bảng trình bày, các nhóm khác chú ý để nhận xét. Cho các nhóm nhận xét Gv sửa chữa những sai sót nếu có. Hs lắng nghe gợi ý và trả lời các câu hỏi Các nhóm thực hiện Đại diện một nhóm thực hiện Nhận xét Lắng nghe và ghi chép Bài tập 6: Gọi M(x;y;z) Vì , k 1: nên kết luận HĐ 3: giải bài tập 8 trang 81 sgk 5’ M thuộc trục Ox thì toạ độ M có dạng nào? M cách đều A, B khi nào? Tìm x? Y/c các nhóm tập trung thảo luận và giải Gọi đại diện một nhóm lên bảng trình bày Cho các nhóm nhận xét Gv sửa chữa những sai sót nếu có. M(x;0;0) MA = MB 1 hs trả lời Các nhóm thực hiện Đại diện một nhóm thực hiện Nhận xét Lắng nghe và ghi chép Bài tập 8: M(-1;0;0) 15’ Điều kiện để? nếu thay toạ độ các vectơ thì ta có đẳng thức(pt) nào? Hãy giải pt và tìm ra giá trị t nhắc lại công thức sin(a+b)=? Và nghiệm pt sinx = sina chú ý: sin(-a)= - sina áp dụng cho pt (1) tìm được t và kết luận Hs trả lời 2sin5t+cos3t+sin3t=0 Hs thực hiện Hs trả lời Hs thực hiện b) có ... (1) ... kết luận Tiết 2 HĐ 4: giải bài tập 10 trang 81 sgk 7’ Để c/m 3 điểm thẳng hàng ta cần chỉ ... n : C Hoạt động 4: đt và các vấn đề liên quan Tgian Hoạt động của hs Hoạt động của giáo viên Ghi bảng 12 phút -Trả lời câu hỏi của gv -Viết ptđt, kết luận Trả lời câu hỏi của gv Tính tích có hướng à vtcp Viết ptđt - Lĩnh hội - Trình bày cách viết ptđt qua O và với d - Nhận xét - Trả lời câu hỏi của gv - Tính các tích có hướng , kết luận - Ghi đề trắc nghiệm - Gọi hs trả lời: Viết pt đt cần các ytố nào, dạng ptđt - Chỉnh sữa, Củng cố cách viết ptđt -Yêu cầu hs Nhận xét qhệ của vectơ đơn vị trên ox, vectơ chỉ phương của so với d xác định vectơ chỉ phương của đt d - Chỉnh sửa, củng cố cách xác định véc tơ chỉ phương trong dạng bài ttự - Vẽ hình , nhận xét : dox , d(oyz)à đường vgóc chung là đthẳng qua O và với d - Củng cố cách xác định pt đt vuông góc chung trong trường hợp đặc biệt - Hỏi hs : cách xét vttđ của hai đt - Củng cố cách xét vttđ của hai đt *Câu : Đường thẳng qua hai điểm (2;-1) và (3;0) có pt là: A . x + y – 1 = 0 B. 2x – y -6 = 0 C. 3x -6 = 0 C. 2x – y – 1= 0 - Lời giải - Kết luận: A *Câu 28(sgknc/118) - Lời giải - Kluận : D *Câu 37(sgknc/121) - Lời giải - Kluận : D *Câu 23(sgknc/116) - Lời giải - Kluận : C Hoạt động 5: củng cố Tgian Hoạt động của hs Hoạt động của giáo viên Ghi bảng 4 phút Củng cố cho hs ứng dụng của tích có hướng Các yếu tố cần tìm và cách viết các dạng pt: mc, mp và đt ĐỀ KIỂM TRA 1 TIẾT Chương III: Phương pháp toạ độ trong không gian - Lớp 12 CT nâng cao I/ Mục tiêu: a) Về kiến thức: - Biết tính toạ độ các phép toán về véc tơ. - Tính được tích có hướng - Biết xét vị trí tương đối - Tính được khoảng cách, góc - T ìm PT m ặt cầu B) Kỹ năng: - Hiểu các kiến thức trong ch ương - V ận dụng kiến thức vào thực tế giải toán c) T ư duy v à th ái đ ộ: - Ph át triển tư duy linh hoạt , sáng tạo - Trung thưc, cẩn thận , chính xác II/ Ma trận đề: Nhận biết Thông hiểu VD thấp VD cao Tổng số TN TL TN TL TN TL TN TL Các phép toán tọa độ V Tơ 1 0,33 1 0,33 Tích vô hướng, có hướng 1 0 ,5 1 0,5 Khoảng cách 2 0,66 1 1,5 3 2,16 Góc 1 0,33 1 0,33 1 0,33 3 0,99 Vị trí tương đối 1 0,33 1 0,33 PT mặt phẳng 1 1 1 0,33 1 1 3 2,33 Diện tích, thể tích 1 0,33 1 0,5 1 0,33 3 1,16 Mặt cầu 2 0,66 1 1,5 3 2,16 Tổng số 4 1,32 4 1,32 2 1,5 3 0,99 3 3,5 1 0,33 1 1 18 10 III/ĐỀ KIỂM TRA . 1/TRẮC NGHIỆM: Câu 1:Cho tam giác ABC với A(1;-4;2), B(-3;2;-1), C(3;-1;-4). Khi đó diện tích tam giác ABC bằng? A) B). C) D). Câu 2: Cho tam giác ABC với A(1;-4;2), B(-3;2;-1), C(3;-1;-4). Khi đó đường cao hạ từ đỉnh A của tam giác ABC bằng? A) B). C) D). Câu 3: Cho mặt cầu (S) : x2 + y2 + z2 –x + y – 3z + 2 = 0. Khi đó tâm I của mặt cầu là: A). I(-1;1;-3) B).I C).I(1;-1;3) D).I Câu 4: Cho mặt cầu (S) : x2 + y2 + z2 +2x -4y + 4z - 7 = 0. Khi đó bán kính R của mặt cầu là: A).R = B). R = 7 C). R = 4 D). R = 5. Câu 5: Cho 3 điểm A(4;3;2), B(-1;-2;1), C(-2;2;-1). Phương trình mặt phẳng qua A và vuông góc với BC là: A). x - 4y + 2z + 4 = 0 B). x + 4y + 2z + 4 = 0 C). x + 4y - 2z - 4 = 0 D). x - 4y - 2z - 4 = 0. Câu 6: Cho 2 điểm A(2;3;4) và B(1;1;2). Độ dài đoạn thẳng AB bằng? A).3 B). 4 C). 5 D). . Câu 7: Cho điểm A(3;-1;3) và mặt phẳng (P): 2x – y – 2z + 5 = 0. Khi đó khoảng cách từ A đến mp(P) bằng? A).6 B). 3 C). 2 D). 5 Câu 8: Cho . Tìm tọa độ của véc tơ . A). B). C). D). Câu 9: Tìm góc tạo bởi hai mặt phẳng (P): x + 2y + z + 4 = 0 và (Q): -x + y + 2z + 3 = 0. A). 300 B). 450 C). 600 D). 900. Câu 10: Tìm cặp m, n để hai mặt phẳng sau song song: (P): 2x + my + 3z – 5 = 0 và (Q): nx – 6y – 6z - 2 = 0. A). m = -3, n = 4 B). m = 3, n = -4 C). m = 4, n = -3 D). m = -4, n = 3. Câu 11: Tìm góc tạo bởi hai đường thẳng: d1: và d2: . A).1200 B). 1500 C). 600 D). 900. Câu 12: Tìm góc tạo bởi đường thẳng d: và mặt phẳng (P): . A).1200 B). 1500 C). 600 D). 300. ĐÁP ÁN: Câu 1 2 3 4 5 6 7 8 9 10 11 12 Tlời B D B C A A C A C B C D 2/T Ự LU ẬN: Cho 4 đi ểm ;;; . 1)Viết PT mặt phẳng (BCD) 2)Chứng minh ABCD là một tứ diện 3)Tính thể tích tứ diện 4)Tính khoảng cách giữa AB và CD 5)Viết phương trình mặt cầu 6)Viết PT mặt phẳng chứa Oy và cắt mặt cầu theo một đường tròn có bán kính bằng ĐÁP ÁN: Câu 1 PT mặt phẳng (BCD) 1đ 0 + Tính , + Suy ra + Giải thích để suy ra PT mặt phẳng có dạng: + Dùng ĐK qua suy ra PT mặt phẳng (BCD) là: 0,25 đ 0,25 đ 0,25 đ 0,25 đ Câu 2 Chứng minh ABCD là một tứ diện 0đ 50 +Ta có: .Suy ra: +Do Suy ra A,B,C,D không đồng phẳng hay ABCD tạo thành một tứ diện 0,25 đ 0,25 đ Câu 3 Tính thể tích tứ diện 0đ 50 +Nêu được công thức: +Theo trên : (đvtt) 0,25 đ 0,25 đ Câu 4 Tính khoảng cách giữa AB và CD 1đ 50 +Nêu được công thức: +Tính ; ; +Tính được: +Tính được: +Tính được: +Suy ra : 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ Câu 5 Phương trình mặt cầu 1đ 50 +Nêu dạng PT mặt cầu: +Cho mặt cầu qua suy ra hai PT: +Cho mặt cầu qua suy ra hai PT: +Giải được :; ; +Giải được : ; +Kết luận PT mặt cầu: 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ Câu 6 Viết PT mặt phẳng chứa Oy và cắt mặt cầu ĐTròn ...... 1đ 00 +Nêu dạng PT mặt phẳng : có ĐK +Từ mp (P) chứa Oy ( (P) qua ) Suy ra PT (P) có dạng: +Từ ĐK bài toán suy ra khoảng cách từ (P) đến tâm mặt cầu là +Từ đó chọn , tìm B suy ra hai PT là: 0,25 đ 0,25 đ 0,25 đ 0,25 đ KIỂM TRA 1 TIIẾT HÌNH HỌC 12 CHƯƠNG III PHƯƠNG PHÁP TOẠ ĐỘ TRONG KHÔNG GIAN I/ Mục tiêu: 1) Về kiến thức: - HS nắm kỷ lý thuyết chương phương pháp toạ độ trong không gian. + Biết được mối lien hệ giữa toạ độ của VT và toạ độ của hai điểm mút. + Biết được các biểu thức toạ độ của các phép toán VT, các công thức cà cách tính các đại lượng hình học bằng toạ độ. + Nhận biết được sự thẳng hàng của 3 điểm, sự cùng phương của 2VT, sự đồng phẳng của 3VT, quan hệ song song, quan hệ vuông góc, 2) Về kỷ năng: - Nhận dạng được các phương trình của đường thẳng, mp, mặt cầu trong một hệ toạ độ cho trước. Viết được phương trình của đường thẳng , mp, mặt cầu khi biết trước 1 số điều kiện. 3) Về tư duy, thái độ: - Vận dụng kiến thức đủ học, suy luận tốt các dạy bài tập. - Học sing phải có thái độ tích cực, sang tạo chuẩn xác khi làm kiểm tra. II/ Chuẩn bị: 1) Giáo viên: phát đề kiểm tra cho HS 2) HS: chuẩn bị giấy, thước , compa, máy tính III) Nội dung đề kiểm tra : 1) Ma trận đề. Mức độ Nội dung Nhận biết TNKQ TL Thông hiểu TNKQ TL Vận dụng TNKQ TL Tổng số Hệ toạ độ trong không gian 2 0,8 3 1,2 5 2 Phương trình mặt phẳng 1 0,4 1 2 0,4 3,0 5 3,8 Phương trình đường thẳng 2 0,8 1 1 0,4 1,5 1 1,5 5 4,2 Tổng số ???????????????? 2) Đề kiểm tra . Câu 1: (NB) Cho 2 vectơ và với m là tham số. khi và chỉ khi m có giá trị. a) m = 0; b) m = -2; c)m = 2; d) Đáp án khác. Câu 2: (TH) Cho 3 điểm A(1; -2; 0), B(-1; 1; 0), C(1; 0; 2). Diện tích là: a) ; b) ; c) ; d) . Câu 3: (NB) Tìm tâm và bán kính mặt cầu có phương trình a) I(1; -2; 0), R = 4; b) I(-1; 2; 0), R = 2; c) I(-1; -2; 0), R = 2; d) I(1; -2; 0), R = 2. Câu 4: (TH) Cho A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c là các số dương thay đổi thoả mãn mp (ABC) luôn đi qua 1 điểm cố định có toạ độ a) (1; 1; 1); b) (2; 2; 2); c) (3; 3; 3); d) (). Câu 5: (NB) Cho điểm M(-1; 2; 3). Gọi A, B, C là hình chiếu của m lên trục Ox, Oy, Oz. Pt mp (ABC) là: a) ; b) ; c) ; d) . Câu 6: (NB) Cho đường thẳng (d): . (d) VTCP là: a) (1; -3; 1); b) (-1; 3; -1); c) (2; 1; -1); d) (-2; -1; 1). Câu 7: (NB) Cho 2 điểm A(2; -1;0) và B(3; -2; 1). PTCT của đường thẳng AB là: a) ; b) ; c) ; d) . Câu 8: (TH) Cho đường thẳng (d): và mặt cầu (S): . Mối quan hệ giữa (d) và (S) là: a) d cắt S tại 2 điểm; b) d tiếp xúc với S; c) d không có điểm chung với S. d) d cắt S tại 1 điểm củng chung nhau. Câu 9: (TH) Cho mp và điểm M(m; 1; m). Khoảng cách từ M đến mp bằng khi m bằng : a) m = 8; b) m = 8 v m = 4; c) m = 8 v m = -4; d) m = -4. Câu 10: (TH) Cho 3 điểm A(-2; 0; 1), B(1; 1; 2), C(1; 0; 0), tứ giác ABC là hình bình hành khi và chỉ khi điểm D có toạ độ là: a) (2; 1; 1); b) (-2; -1; 1); c) (-2; -1; -1); d) (2; -1; -1). Tự luận Cho mp : x + 2y – z + 5 = 0 và đường thẳng (d): a) Tìm toạ độ giao điểm của (d) và (P). b) Tính góc giữa (d) và (P). c) Viết phương trình hình chiếu của (d) lên P. d) Viết phương trình đường thẳng () nằm trên (P) đi qua giao điểm của (d) và (P) và với d. 3) Đáp án TNKQ Câu 1 Câu 2 Câu 3 Câu 4 Câu 5 Câu 6 Câu 7 Câu 8 Câu 9 Câu 10 C B D D B C B A C C TLuận Giải a) TS của (d): Thay x, y, z vào phương trình mp (P) ta có : b) c) Gọi d’ là đường thẳng cần tìm . d’ là giao điểm của 2 mp (P) và (a) trong đó là mp chứa (d) và (P). (d) có , (P) có VTPT có VTPT: d) đi qua Acó VTCP: do và nên ta có hệ lấy m = -1 thì n = 1, p = 1 đi qua A và có VTCP: Þ phương trình đường thẳng () . Ngày soạn: 12/08/2008 ĐỀ KIỂM TRA MỘT TIẾT MÔN: HÌNH HỌC 12-Thời gian: 45 phút MỤC ĐÍCH: - Đánh giá việc học tập của học sinh ở hai nội dung: hệ tọa độ Đề-các trong không gian và phương trình mặt phẳng. YÊU CẦU: - Học sinh cần ôn tập các kiến thức ở hai nội dung trên và hoàn thành bài kiểm tra tự luận trong thời gian 45 phút. MỤC TIÊU: - Thông qua bài kiểm tra giúp học sinh thể hiện thái độ nghiêm túc trong học tập, xác định rõ những kiến thức cần đạt được đồng thời rèn luyện kỹ năng cần thiết trong việc giải toán tọa độ trong không gian. IV. MA TRẬN: Chủ Đề Nhận Biết Thông Hiểu Vận Dụng Tổng Hệ Tọa Độ Trong Không Gian 1a, 1b 2 1c 2 4 Phương Trình Mặt Phẳng 2a 2 2b 2 2c 2 6 Tổng 4 4 2 10 NỘI DUNG: Bài 1. Cho tứ diện ABCD với A(2; 4; -1), B(1; 4; -1), C(2; 4; 3) và D(2; 2; -1) Chứng minh: AB, AC, AD đôi một vuông góc. Tìm tọa độ trọng tâm G của tam giác BCD. Viết phương trình mặt phẳng trung trực của đoạn thẳng AG. Bài 2. Cho bốn điểm A(1; 0; 0), B(0; 1; 0), C(0; 0; 1), D(-2; 1; -1) Viết phương trình mặt phẳng (BCD). Viết phương trình mặt cầu (S) có tâm A và tiếp xúc với mặt phẳng (BCD). Viết phương trình mặt phẳng (a) chứa AD và song song với BC. Tính khoảng cách giữa hai cạnh đối AD và BC của tứ diện. ĐÁP ÁN: Bài 1. a) (0,5đ) Þ AB, AC, AD đôi một vuông góc. (0,5đ) b) Giả sử G(x; y; z) Ta có: Nên G: Û G (1đ) c) Trung điểm I của AG có tọa độ (1đ) Phương trình mặt phẳng trung trực của đoạn AG: 6x + 12y - 24z - 63 = 0 (1đ) Bài 2. Ta có: , Þ Mp (BCD) có vec-tơ pháp tuyến là: (1đ) Phương trình mặt phẳng (BCD) qua B có VTPT x - 2y + 2z + 2 = 0 (1đ) b) Do mặt cầu (S) tiếp xúc với mp(BCD) nên bán kính của (S) là: R = d(A, (BCD)) = (1đ) Vậy, phương trình mặt cầu tâm A, bán kính R= 1 là: (x-1)2 + y2 + z2 = 1 (1đ) c) Ta có: , mặt phẳng (a) có VTPT là: = 3(0; 1; 1) Phương trình mặt phẳng (a) qua A và có VTPT = (0; 1; 1): y + z = 0 (1đ) Do mp (a) chứa AD và song song với BC nên khoảng cách giữa AD và BC bằng khoảng cách từ điểm B đến mp (a). d(AD, BC) = d(B, (a)) = (1đ)
Tài liệu đính kèm: