KHÁI NIỆM VỀ MẶT TRÒN XOAY
( 3 Tiết)
Ngày soạn :
Số tiết: 3
I. Mục tiêu:
+ Về kiến thức:
- Nắm được sự tạo thành mặt tròn xoay ,các yếu tố của mặt tròn xoay: Đường sinh,trục
- Hiểu được mặt nón tròn xoay ,góc ở đỉnh ,trục,đường sinh của mặt nón
-Phản biện các khái niệm : Mặt nón,hình nón khối nón tròn xoay,nắm vững công thức tính toán diện tích xung quanh ,thể tích của mặt trụ ,phân biệt mặt trụ,hình trụ,khối trụ . Biết tính diện tích xung quanh và thể tích .
-Hiểu được mặt trụ tròn xoay và các yếu tố liên quan như:Trục ,đường sinh và các tính chất c
+ Về kỹ năng:
-Kỹ năng vẽ hình ,diện tích xung quanh ,diện tích toàn phần,thể tích .
-Dựng thiết diện qua đỉnh hình nón ,qua trục hình trụ,thiết diện song song với trục
+ Về tư duy và thái độ:
-Nghiêm túc tích cực ,tư duy trực quan
KHÁI NIỆM VỀ MẶT TRÒN XOAY ( 3 Tiết) Ngày soạn : Số tiết: 3 Mục tiêu: + Về kiến thức: - Nắm được sự tạo thành mặt tròn xoay ,các yếu tố của mặt tròn xoay: Đường sinh,trục - Hiểu được mặt nón tròn xoay ,góc ở đỉnh ,trục,đường sinh của mặt nón -Phản biện các khái niệm : Mặt nón,hình nón khối nón tròn xoay,nắm vững công thức tính toán diện tích xung quanh ,thể tích của mặt trụ ,phân biệt mặt trụ,hình trụ,khối trụ . Biết tính diện tích xung quanh và thể tích . -Hiểu được mặt trụ tròn xoay và các yếu tố liên quan như:Trục ,đường sinh và các tính chất c + Về kỹ năng: -Kỹ năng vẽ hình ,diện tích xung quanh ,diện tích toàn phần,thể tích . -Dựng thiết diện qua đỉnh hình nón ,qua trục hình trụ,thiết diện song song với trục + Về tư duy và thái độ: -Nghiêm túc tích cực ,tư duy trực quan Chuẩn bị của giáo viên và học sinh: + Giáo viên: Chuẩn bị thước kẻ,bảng phụ ,máy chiếu (nếu có ) ,phiếu học tập + Học sinh: SGK,thước ,campa Phương pháp: -Phối hợp nhiều phương pháp ,trực quan ,gợi mở,vấn đáp ,thuyết giảng Tiến trình bài học: Ổn định tổ chức: Kiểm tra bài cũ: Bài mới: Hoạt động 1: T.gian Hoạt động giáo viên Hoạt động học sinh Ghi bảng 7’ + Giới thiệu một số vật thể : Ly,bình hoa ,chén ,gọi là các vật thể tròn xoay + Treo bảng phụ ,hình vẽ -Trên mp(P) chovà () M() H1: Quay M quanh một góc 3600 được đường gì? -Quay (P) quanh trục thì đường () có quay quanh ? - Vậy khi măt phẳng (P) quay quanh trục thì đường () quay tạo thành một mặt tròn xoay -Cho học sinh nêu một số ví dụ -Quan sát mặt ngoài của các vật thể -học sinh suy nghỉ trả lời. HS cho ví dụ vật thể có mặt ngoài là mặt tròn xoay I/ Sự tạo thành mặt tròn xoay (SGK) M (P Hình vẽ 2.2 + () đường sinh + trục 5’ Hoạt động 2 Trong mp(P) cho và tạo một góc ( Treo bảng phụ ) Cho (P) quay quanh thì d có tạo ra mặt tròn xoay không? mặt tròn xoay đó giống hình vật thể nao? Hình thành khái niệm II/ Mặt nón tròn xoay 1/ Định nghĩa (SGK) d O - Vẽ hình: -Đỉnh O Trục d : đường sinh ,góc ở đỉnh 2 7’ 7’ Hoạt động 3 HĐTP 1 - Vẽ hình 2.4 + Chọn OI làm trục ,quay OIM quanh trục OI H: Nhận xét gì khi quay cạnh IM và OM quanh trục ? +Chính xác kiến thức. Hình nón gồm mấy phần? + Có thể phát biểu khái niệm hình nón tròn xoay theo cách khác HĐTP2 -GV đưa ra mô hình khối nón tròn xoay cho hs nhận xét và hình thành khái niệm + nêu điểm trong ,điểm ngoài + củng cố khái niệm : Phân biệt mặt nón ,hình nón , khối nón . +Gọi H là trung điểm OI thì H thuộc khối nón hay mặt nón hay hình nón ? -Trung điểm K của OM thuộc ? -Trung điểm IN thuộc ? Học sinh suy nghĩ trả lời + Quay quanh M : Được đường tròn ( hoặt hình tròn ) + Quay OM được mặt nón Hình thành khái niệm + Hình gồm hai phần +HS nghe Học sinh trả lời 2 / Hình nón tròn xoay và khối nón tròn xoay a/ Hình nón tròn xoay Vẽ hình: + Khi quay vuông OIM quanh cạnh OI một góc 3600 ,đường gấp khúc IMOsinh ra hình nón tròn xoay hay hình nón O: đỉnh OI: Đường cao OM: Độ dài đường sinh -Mặt xung quanh (sinh bởi OM) và mặt đáy ( sinh bởi IM) b/ Khối nón tròn xoay (SGK) Hình vẽ 12’ 5’ 2’ Hoạt động 4 Cho hình nón ; trên đường tròn đáy lấy đa giác đều A1A2An, nối các đường sinh OA1,OAn( Hình 2.5 SGK) Khái niệm hình chóp nội tiếp hình nón Diện tích xung quanh của hình chóp đều được xác định như thế nào ? GV thuyết trình khái niệm diện tích xung quanh hình nón Nêu cách tính diện tích xung quanh của hình chóp đều có cạnh bên l. + Khi n dần tới vô cùng thì giới hạn của d là? Giới hạn của chu vi đáy? Hình thành công thức tính diện tích xung quanh . H: Có thể tính diện tích toàn phần được không ? + Hướng dẫn học sinh tính diện tích xung quanh bằng cách khác ( Trãi phẳng mặt xung quanh ) +Gọi học sinh giải Củng cố tiết 1 HS chú ý nghe giảng HS nêu S=( Cv Chu vi đáy ) S=lCchu vi đường tròn =l= Học sinh trả lời HS nhận biết diện tích xung quanh chính là diện tích hình quạt. HS lên bảng giải. 3/ Diện tích xung quanh a/ Định nghĩa (SGK) b/ Công thức tính diện tích xung quanh Hình vẽ: Cho hình nón đỉnh O đường sinh l,bán kính đường đáy r Khi đó ta có công thức : Sxq= Stp=Sxq+Sđáy Ví dụ: Cho hình nón có đường sinh l=5 ,đường kinh bằng 8 .Tính diện tích xung quanh của hình nón. Tiết 2 3’ 7’ HOẠT ĐÔNG 1 Nêu ĐN: + Cho học sinh nêu thể tích khối chóp đều n cạnh + Khi n tăng lên vô cùng tìm giới hạn diện tích đa giác đáy ? Công thức HS Chú ý nghe và ghi bài V=Sđáy.h HS tìm diện tích hình tròn đáy V= 4/ Thể tích khối nón a/ Định nghĩa(SGK) b/Công thức tính thể tích khối nón tròn xoay: Khối nón có chiều cao h,bán kính đường tròn đáy r thì thể tích khối nón là: V= 10’ GV treo hình vẽ 2.7 + Cho HS tìm r,l thay vào công thức diện tích xung quanh ,diện tích toàn phần . c/ Cắt hình nón bởi mặt phẳng qua trục ta được một thiết diện . Thiết diện là hình gì? Tính diện tích thiết diện đó . + Nêu cách xác định thiết diện HS lên bảng giải HS lên bảng tính thể tích Hs xác định thiết diện là tam giác đều và sử dụng công thức để tính diện tích thiết diện. 5/ Ví dụ :Trong không gian cho tam giác OIM vuông tại I,góc =300 và cạnh IM=a.Khi quay tam giác IOM quanh cạnh OI thì đường gấp khúc OMI tạo thành một hình nón tròn xoay . a/ tính diện tích xung quanh và diện tích toàn phần. ĐS: Sxq= Stp= b/ Tính thể tích khối nón. ĐS: V= c/ ĐS :S=OM2= 7’ HOẠT ĐỘNG 2 HĐTP1: Quay lại hình 2.2 Ta thay đường bởi đường thẳng d song song + Khi quay mp (P) đường d sinh ra một mặt tròn xoay gọi là mặt trụ tròn xoay ( Hay mặt trụ) + Cho học sinh lấy ví dụ về các vật thể liên quan đến mặt trụ tròn xoay + Mặt ngoài viên phấn + Mặt ngoài ống tiếp điện III/ Mặt trụ tròn xoay: 1/ Định nghĩa (SGK) Hình vẽ:2.8 + l là đường sinh + r là bán kính mặt trụ 8’ 7’ 3’ HĐTP 2 Trên cơ sở xây dựng các khái niện hình nón tròn xoay và khối nón tròn xoay cho hs làm tương tự để dẫn đến khái niệm hình trụ và khối trụ + Cho hai đồ vật viên phấn và vỏ bọc lon sữa so sánh sự khác nhau cơ bản của hai vật thể trên. HĐTP3 +Phân biệt mặt trụ,hình trụ ,khối trụ Gọi hs cho các ví dụ để phân biệt mặt trụ và hình trụ ; hình trụ và khối trụ Củng cố tiết 2 Hs thảo luận nhóm và trình bày khái niệm +HS trả lời - Viên phấn có hình dạng là khối trụ -Vỏ hộp sửa có hình dạng là hình trụ HS suy nghỉ trả lời Học sinh cho ví dụ 2/ Hình trụ tròn xoay và khối trụ tròn xoay a/ Hình trụ tròn xoay Hình vẽ 2.9 Mặt đáy: Mặt xung quanh : Chiều cao: b/ Khối trụ tròn xoay (SGK) 10’ 3’ Tiết 3 HOẠT ĐỘNG 1 + Cho học sinh thảo luận nhóm để nêu các khái niệm về lăng trụ nội tiếp hình trụ + Công thức tính diện tích xung quanh hình lăng trụ n cạnh H: Khi n tăng vô cùng tìm giới hạn chu vi đáy hình thành công thức Gọi HS phát biểu công thức bằng lời HS trả lời ( nêu nội dung SGK) Trình bày công thức và tính diện tích xung quanh hình lưng trụ HS nêu đáp số 3/ Diện tích xung quanh của hình trụ (SGK) Vẽ hình r l Sxq= Stp=Sxq+2Sđáy Ví dụ áp dụng : Cho hình trụ có đường sinh l=15,và mặt đáy có đường kính 10. Tính diện tích xung quanh và diện tích toàn phần 3’ Cắt hình trụ theo một đường sinh ( Bảng phụ hình 2.11) + Cho học sinh nhận xét diện tích xung quanh của hình trụ là diện tích phần nào HS trả lời diện tích hình chữ nhật có các kích thước là công thức tính diện tích Chú ý : Có thể tính bằng cách khác 10’ HOẠT ĐỘNG 2 + Nhắc lại công thức tính thể tích hình lăng trụ đều n cạnh H: Khi n tăng lên vô cùng thì giới hạn diện tích đa giác đáy ? Chiều cao lăng trụ có thay đổi không ? Công thức V=B.h B diện tích đa giác đáy h Chiều cao 4/ Thể tích khối trụ tròn xoay a/ Định nghĩa (SGK) b/ Hình trụ có đường sinh là l ,bán kính đáy r có thể tích law: V=Bh Với B=,h=l Hay V= l 15’ Hoạt động 3 Vẽ hình 2.12 Phát phiếu học tập( Nội dung trong câu c/) c/Qua trung điểm DH dựng mặt phẳng (P) vuông góc với DH . Xác định thiết diện ,tính diện tích thiết diện Học sinh lên bảng giải Học sinh hoạt động nhóm 5/Ví dụ (SGK) V/ Củng cố 4’ - Phân biệt các khái niệm ,nhắc lại công thức tính toán -Hướng dẫn bài tập về nhà bài 1,2,3 ,5,6 trang 39, bài 9 trang 40
Tài liệu đính kèm: