Giáo án Giải tích lớp 12 - Tiết 62 - Bài 3: Tích phân( 2 tiết)

Giáo án Giải tích lớp 12 - Tiết 62 - Bài 3:  Tích phân( 2 tiết)

Mục tiêu:

 a) Về kiến thức : khái niệm tích phân, diện tích hình thang cong, tính chất của tích phân,

 -Học sinh hiểu được bài toán tính diện tích hình thang cong và bài toán quãng đường đi

 được của một vật.

 - Phát biểu được định nghĩa tích phân, định lí về diện tích hình thang cong.

 - Viết được các biểu thứcbiểu diễncác tính chất của tích phân

 b) Về kỹ năng:Học sinh rèn luyện được kĩ năng tính một số tích phân đơn giản. Vận dụng

 

doc 8 trang Người đăng haha99 Lượt xem 947Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án Giải tích lớp 12 - Tiết 62 - Bài 3: Tích phân( 2 tiết)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tr­êng THPT T©n Yªn 2
Tæ To¸n
	TiÕt theo ph©n phèi ch­¬ng tr×nh : 62.
	Ch­¬ng 3: Nguyên hàm tích phân và ứng dụng
	§3: TÝch Ph©n( 2tiÕt) 
Ngµy so¹n: 15/01/2010
TiÕt 2
 I. Mục tiêu:
 a) Về kiến thức : khái niệm tích phân, diện tích hình thang cong, tính chất của tích phân, 
 -Học sinh hiểu được bài toán tính diện tích hình thang cong và bài toán quãng đường đi 
 được của một vật.
 - Phát biểu được định nghĩa tích phân, định lí về diện tích hình thang cong.
 - Viết được các biểu thứcbiểu diễncác tính chất của tích phân 
 b) Về kỹ năng:Học sinh rèn luyện được kĩ năng tính một số tích phân đơn giản. Vận dụng 
 vào thực tiễn để tính diện tích hình thang cong , giải các bài toán tìm quãng đường đi
 được của một vật
 c) Về tư duy và thái độ : 
 -Thái độ: tích cực xây dựng bài, chủ động,sáng tạo trong quá trình tiếp cận tri thức mới .
 - Tư duy: hình thành tư duy logic, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ.
 II. Phương pháp : 
 - Thuyết trình, kết hợp thảo luận nhóm và hỏi đáp. 
 - Phương tiện dạy học: SGK. 
 III. Chuẩn bị:
	 + Chuẩn bị của giáo viên :
Phiếu học tập, bảng phụ.
 + Chuẩn bị của học sinh :
Hoàn thành các nhiệm vụ ở nhà.
Đọc qua nội dung bài mới ở nhà.
 IV. Tiến trình tiết dạy :
 1.Ổn định lớp :
 2.Kiểm tra bài cũ : 5’
Viết công thức tính nguyên hàm của một số hàm số hàm số thường gặp.
Tính :
GV nhắc công thức : 
 3.Vào bài mới
 Hoạt động 1: Tìm hiểu khái niệm tích phân qua bài toán diện tích hình thang cong
 Tg 
 Hoạt động của giáo viên
Hoạt động của Hs
Nội dung ghi bảng
8’
5’
-Giáo viên định hướng học sinh giải bài toán 2 (sgk)
+Gọi s(t) là quãng đường đi được của vật cho đến thời điểm t. Quãng đường đi được trong khoảng thời gian từ thời điểm t = a đến thời điểm t = b là bao nhiêu?
+ v(t) và s(t) có liên hệ như thế nào?
+Suy ra f(t) và s(t) có liên hệ như thế nào? 
+Suy ra s(t) và F(t) có liên hệ như thế nào? 
+Từ (1) và (2) hãy tính L theo F(a) và F(b)?
-Giáo viên định hướng học sinh giải quyết nhiệm vụ ở phiếu học tập 2
+Tìm họ nguyên hàm của f(t)?
+Lấy một nguyên hàm của F(t) của f(t) trong họ các nguyên hàm đã tìm được
+Tính F(20) và F(50)?
+Quãng đường L vật đi được trong khoảng thời gian từ t1 =20 đến t2=50 liên hệ như thế nào với F(20) và F(50)
-Học sinh tiến hành giải dưới sự định hướng của giáo viên 
Quãng đường đi được trong khoảng thời gian từ thời điểm 
 t = a đến thời điểm t = b là :
 L = s(b) – s(a) (1)
 v(t) = s’(t)
s’(t) = f(t) 
s(t) là một nguyên hàm của f(t) suy ra tồn tại C: s(t) = F(t) +C (2)
Từ (1) và (2) L= F(b)–F(a)
-Học sinh tiến hành giải dưới sự định hướng của giáo viên 
I = 
 F(t) = 
F(20) = 640 ; F(50) = 3850
Suy ra L = F(50)–F(20)=3210(m)
b, Quãng đường đi đượccủa1 vật
Bài toán 2: (sgk) 
CM: Quãng đường đi được trong khoảng thời gian từ thời điểm 
 t = a đến thời điểm t = b là :
 L = s(b) – s(a) (1)
 v(t) = s’(t)
s’(t) = f(t) 
s(t) là một nguyên hàm của f(t) suy ra tồn tại C: s(t) = F(t) +C (2)
Từ (1) và (2) L= F(b)–F(a)
GIẢI:
I = 
 F(t) = 
F(20) = 640 ; F(50) = 3850
Suy ra L = F(50)–F(20)=3210(m)
4
 Hoạt động 2: Tìm hiểu khái niệm tích phân 
Tg
 Hoạt động của giáo viên
Hoạt động của Hs
Nội dung ghi bảng
7’
5’
15’
-Giáo viên nêu định nghĩa tích phân (sgk)
-Giáo viên nhấn mạnh. Trong trường hợp a < b, ta gọi là tích phân của f trên đoạn [a ; b ].
Giáo viên yêu cầu học sinh trả lời câu hỏi (H2)
Gợi ý:
-Gọi F(x) = g(x) +C là họ các nguyên hàm của f(x)
-Chọn nguyên hàm F1(x) = g(x)+C1
bất kì trong họ các nguyên hàm đó.
-Tính F1(a), F1(b)?
-Tính ?
-Nhận xét kết quả thu được
-Giáo viên lưu ý học sinh: Người ta còn dùng kí hiệu F(x)| để chỉ hiệu số F(b) -F(a).
-Hãy dùng kí hiệu này để viết 
-Giáo viên lưu ý học sinh: Người ta gọi hai số a, b là hai cận tích phân, số a là cận dưới, số b la cận trên, f là hàm số dưới dấu tích phân, f(x)dx là biểu thức dưới dấu tích phân và x là biến số lấy tích phân
-Giáo viên định hướng học sinh giải quyết nhiệm vụ ở phiếu học tập số 3 
Học sinh tiếp thu và ghi nhớ
Học sinh tiến hành giải dưới sự định hướng của giáo viên 
Giả sử: F(x) = = g(x)+C
Chọn F1(x) = g(x)+C1 bất kì 
F1(a) = g(a)+C1
 F1(b) = g(b)+C1
 = [g(b)+C1]-[g(a)+C1]
 = g(b) – g(a)
Không phụ thuộc vào cách chọn C1 đpcm
Học sinh tiếp thu , ghi nhớ
Giả sử F(x) là một nguyên hàm của f(x) thì: = F(x)| 
Học sinh giải quyết dưới sự định hướng của giáo viên:
 5
2/Khái niệm tích phân
 Định nghĩa: (sgk)
Người ta còn dùng kí hiệu F(x)| để chỉ hiệu số F(b) -F(a).Như vậy nếu F là một nguyên hàm của f trên k thì : = F(x)|
5’
 a) 
-Tìm nguyên hàm của 2x?
-Thay các cận vào nguyên hàm trên
 b) 
-Tìm nguyên hàm của sinx?
-Thay các cận vào nguyên hàm trên 
 c) 
-Tìm nguyên hàm của ?
-Thay các cận vào nguyên hàm trên 
d) 
-Tìm nguyên hàm của ?
-Thay các cận vào nguyên hàm trên
+Với định nghĩa tích phân như trên, kết quả thu được ở bài toán 1 được phát biểu lại như thế nào?
-Giáo viên thể chế hóa tri thức, đưa ra nội dung của định lý 1:Cho hàm số y = f(x) liên tục và không âm trên K; a và b là hai số thuộc K 
( a<b). Khi đó diện tích S của hình thang cong giới hạn bởi đồ thị hàm số y = f(x) trục hoành và 2 đường thẳng x = a, x =b là: S = 
-Giáo viên hướng dẫn học sinh trả lời H3.
-Theo kết quả của bài toán 2. quãng đường vật đi được từ điểm a đến thời điểm b được tính như thế nào?
-Dựa vào định nghĩa tích phân hãy viết lại kết quả thu được?
a) = x2| = 25 – 1 = 24
b) = - cosx |=- (0 -1) =1
c)= tanx|= 
d)= ln|x||= ln4 – ln2 =ln 
 = ln2
Học sinh thảo luận theo nhóm trả lời.
Học sinh giải quyết dưới sự định hướng của giáo viên:
Theo kết quả của bài toán 2. Quãng đường vật đi được từ điểm a đến thời điểm b là:
 L = F(b) –F(a)
F(x) là nguyên hàm của f(x)
Theo định nghĩa tích phân
 = F(b) –F(a)
 L = (đpcm)
Giải:
a) = x2| = 25 – 1 = 24
b) = - cosx |=- (0 -1) =1
c)= tanx|= 
d)= ln|x||= ln4 – ln2 =ln 
 = ln2
ĐỊNH LÍ1: Cho hàm số y = f(x) liên tục và không âm trên K; a và 
b là hai số thuộc K 
( a<b). Khi đó diện tích S của hình thang cong giới hạn bởi đồ thị hàm số y = f(x) trục hoành và 2 đường thẳng x = a, x =b là: 
 S = 
Theo kết quả của bài toán 2. Quãng đường vật đi được từ điểm a đến thời điểm b là:
 L = F(b) –F(a)
F(x) là nguyên hàm của f(x)
Theo định nghĩa tích phân
 = F(b) –F(a)
 L = (đpcm)
6
 IV. CỦNG CỐ:5’
- Phát biểu lại kết quả cuă bài toán tính diện tích hình thang cong và bài toán quãng đường đi được một vật. 
- Phát biểu được định nghĩa tích phân, định lý về diện tích hình thang cong.
- Viết được các biểu thức biểu diễn các tính chất của tích phân.
- Trả lời câu hỏi H5.
 V.NHIỆM VỤ VỀ NHÀ:
-Xem lại bài toán tính diện tích hình thang cong và bài toán quãng đường đi được một vật. 
-Học thuộc các tính chất của tích phân.
- Giải bài tập sách giáo khoa 
- Bài tập làm thêm:
 1) Tính diện tích hình thang cong giới hạn bởi đồ thị hàm số y = -2x2 +3x +6 ,trục hoành , trục tung và đường thẳng x =2 .
 2) Tính : I = .
8
VI. PHỤ LỤC
Phiếu học tập số 1
Tính diện tích hình thang cong giới hạn bởi đồ thị hàm số y = x4 trục hoành và hai đường thẳng x =1 , x =2 
Phiếu học tập số 2
Vật chuyển động thẳng có vận tốc thay đổi theo thời gian v = f(x) = 3t + 2 m/s. Tìm quãng đường L vật đi được trong khoange thời gian từ t1 = 20 s đến t2 = 50 s?
Phiếu học tập số 3
 Tính giá trị các tích phân sau:
 a) b) c) d) 
Phiếu học tập số 4
 Tính các tích phân sau:
 I= , J= 

Tài liệu đính kèm:

  • docDAI SO T62.doc