I. Mục tiêu
1.Về kiến thức:
- Học sinh nắm vững hai pp tìm nguyên hàm .
2. Về kĩ năng:
- Giúp học sinh vận dụng được 2 phương pháp tìm nguyên hàm của một số hàm số.
3. Về tư duy thái độ:
- Phát triển tư duy linh hoạt.
-Học sinh tích cực tham gia vào bài học, có thái độ hợp tác.
II. Chuẩn bị của giáo viên và học sinh
1. Giáo viên :
- Bài tập sgk
Trêng THPT T©n Yªn 2 Tæ To¸n TiÕt theo ph©n phèi ch¬ng tr×nh : 60. Ch¬ng 3: Nguyên hàm tích phân và ứng dụng §2: LuyÖn TËp ( 1tiÕt) Ngµy so¹n: 15/01/2010 TiÕt 1 Mục tiêu 1.Về kiến thức: - Học sinh nắm vững hai pp tìm nguyên hàm . 2. Về kĩ năng: - Giúp học sinh vận dụng được 2 phương pháp tìm nguyên hàm của một số hàm số. 3. Về tư duy thái độ: - Phát triển tư duy linh hoạt. -Học sinh tích cực tham gia vào bài học, có thái độ hợp tác. Chuẩn bị của giáo viên và học sinh 1. Giáo viên : - Bài tập sgk - Lập các phiếu học tập. 2. Học sinh: Biết phân biệt dạng toán dung pp đổi biến số, từng phần III. Phương pháp: IV.Tiến trình bài học Kiểm tra bài cũ: (10 phút) Câu hỏi 1: Hãy phát biểu phương pháp đổi biến số để tìm nguyên hàm? Áp dụng: Tìm cosdx Câu hỏi 2:Hãy phát biểu phương pháp lấy nguyên hàm từng phần để tìm nguyên hàm. Áp dụng: Tìm (x+1)edx Yêu cầu một HS khác nhận xét, bổ sung. Gv kết luận và cho điểm. Thời gian Hoạt động của học sinh Hoạt động của giáo viên Ghi bảng 5’ 5’ 6’ 9’ - Hs1: Dùng pp đổi biến số Đặt u = sin2x - Hs2: Đặt u = sin2x du = 2cos2xdx Khi đó:sin2x cos2xdx =udu =u6 + C = sin62x + C -Hs1: Dùng pp đổi biến số Đặt u = 7-3x2 - Hs2:đặt u=7+3x2du=6xdx Khi đó : dx = =udu = u+C =(7+3x2)+C Đ: Dùng pp lấy nguyên hàm từng phần. Đặt u = lnx, dv = dx du = dx , v = x Khi đó: lnxdx = = x-xdx = x- x+ C= = - x+C Đ:Dùng pp đổi biến số, sau đó dùng pp từng phần. Đặt t = t=3x-9 2tdt=3dx Khi đó:edx =tedt Đặt u = t, dv = etdt du = dt, v = et Khi đó:tedt=tet - = t et- et + c Suy ra: edx=tet - et + c Thông qua nội dung kiểm tra bài cũ Giáo viên nhấn mạnh thêm sự khác nhau trong việc vận dụng hai phương pháp. - Gọi môt học sinh cho biết cách giải, sau đó một học sinh khác trình bày cách giải. -Gọi môt học sinh cho biết cách giải, sau đó một học sinh khác trình bày cách giải. H:Có thể dùng pp đổi biến số được không? Hãy đề xuất cách giải? H:Hãy cho biết dùng pp nào để tìm nguyên hàm? - Nếu HS không trả lời được thì GV gợi ý. Đổi biến số trước, sau đó từng phần. Bài 1.Tìm sin cosdx Bg: Đặtu=sin du= cosdx Khi đó:sin cosdx =udu =u6 + C= sin6 + C Hoặc sin cosdx =sin d(sin ) =sin + C Bài 2.Tìm dx Bg: Đặt u=7+3x2du=6xdx Khi đó : dx = =udu = u+C =(7+3x2)+C Bài 3. Tìm lnxdx Bg: Đặt u = lnx, dv = dx du = dx , v = x Khi đó: lnxdx = = x-xdx = x- x+ C= = - x+C Bài 4. Tìm edx Bg:Đặt t = t=3x-9 2tdt=3dx Khi đó:edx =tedt Đặt u = t, dv = etdt du = dt, v = et Khi đó:tedt=tet - = t et- et + c Suy ra: edx=tet - et + c Hoạt động 7: Củng cố.(10’) Với bài toán , hãy ghép một ý ở cột trái với một ý ở cột phải để được một mệnh đề đúng. Hàm số Phương pháp 1/ f(x) = cos(3x+4) 2/ f(x) = 3/ f(x) = xcos(x2) 4/ f(x) = x3ex 5/ f(x)= sincos a/ Đổi biến số b/ Từng phần c/ Đổi biến số d/ Đổi biến số e/ Từng phần. V. Bài tập về nhà: Tìm trong các trường hợp trên.
Tài liệu đính kèm: