Giáo án Giải tích lớp 12 - Chương 2

Giáo án Giải tích lớp 12 - Chương 2

1. Về kiến thức:

Nắm được các khái niệm luỹ thừa với số mũ nguyên, luỹ thừa với số mũ hữu tỉ và luỹ thừa của một số thực dương .

Nắm được các tính chất của luỹ thừa với số mũ nguyên, luỹ thừa với số mũ hữu tỉ và luỹ thừa với số mũ thực .

2. Về kỹ năng :

Biết dùng các tính chất của luỹ thừa để rút gọn biểu thức, so sánh các biểu thức có chứa luỹ thừa .

3. Về tư duy và thái độ :

Từ khái niệm luỹ thừa với số nguyên dương xây dựng khái niệm luỹ thừa với số mũ thực.

Rèn luyện tư duy logic, khả năng mở rộng , khái quát hoá.

II. Chuẩn bị:

 

doc 45 trang Người đăng haha99 Lượt xem 972Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án Giải tích lớp 12 - Chương 2", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
LUỸ THỪA
Tuần: 	Tiết:
Mục tiêu :
Về kiến thức:
Nắm được các khái niệm luỹ thừa với số mũ nguyên, luỹ thừa với số mũ hữu tỉ và luỹ thừa của một số thực dương .
Nắm được các tính chất của luỹ thừa với số mũ nguyên, luỹ thừa với số mũ hữu tỉ và luỹ thừa với số mũ thực .
Về kỹ năng : 
Biết dùng các tính chất của luỹ thừa để rút gọn biểu thức, so sánh các biểu thức có chứa luỹ thừa .
Về tư duy và thái độ :
Từ khái niệm luỹ thừa với số nguyên dương xây dựng khái niệm luỹ thừa với số mũ thực. 
Rèn luyện tư duy logic, khả năng mở rộng , khái quát hoá.
Chuẩn bị:
GV: Giáo án , bảng phụ , phiếu học tập .
HS: SGK và kiến thức về luỹ thừa đã học ở cấp 2 .
Phương pháp :
Phối hợp nhiều phương pháp nhằm phát huy tính tích cực của học sinh
Phương pháp chủ đạo : Gợi mở nêu vấn đề .
Tiến trình bài học :
Ổn định lớp :
Kiểm tra bài cũ :
Câu hỏi 1 : Tính 
Câu hỏi 2 : Nhắc lại định nghĩa luỹ thừa bậc n của a (n)
Bài mới :
Hoạt động 1 : Hình thành khái niệm luỹ thừa .
HĐTP 1 : Tiếp cận định nghĩa luỹ thừa với số mũ nguyên .
Tg
Hoạt động của giáo viên
Hoạt động của học sinh
Nội dung ghi bảng
Câu hỏi 1 :Với m,n 
=? (1)
=? (2)
=?
Câu hỏi 2 :Nếu m<n thì công thức (2) còn đúng không ?
Ví dụ : Tính ?
-Giáo viên dẫn dắt đến công thức : 
-Giáo viên khắc sâu điều kiện của cơ số ứng với từng trường hợp của số mũ
-Tính chất.
-Đưa ra ví dụ cho học sinh làm 
- Phát phiếu học tập số 1 để thảo luận .
-Củng cố,dặn dò.
-Bài tập trắc nghiệm.
-Hết tiết 1.
+Trả lời.
 , 
+A = - 2
+Nhận phiếu học tập số 1 và trả lời.
I.Khái niện luỹ thừa :
1.Luỹ thừa với số mũ nguyên :
 Cho n là số nguyên dương.
n thừa số
Với a0
Trong biểu thức am , ta gọi a là cơ số, số nguyên m là số mũ.
CHÚ Ý :
 không có nghĩa.
Luỹ thừa với số mũ nguyên có các tính chất tương tự của luỹ thừa với số mũ nguyên dương .
 Ví dụ1 : Tính giá trị của biểu thức 
Tiết2:
HĐTP 2 :Dựa vào đồ thị biện luận số nghiệm của pt xn = b
Tg
Hoạt động của giáo viên
Hoạt động của học sinh
Nội dung ghi bảng
-Treo bảng phụ : Đồ thị của hàm số y = x3 và đồ thị của hàm số y = x4 và đường thẳng y = b
CH1:Dựa vào đồ thị biện luận theo b số nghiệm của pt x3 = b và x4 = b ?
-GV nêu dạng đồ thị hàm số y = x2k+1 và 
y = x2k
CH2:Biện luận theo b số nghiệm của pt xn =b
Dựa vào đồ thị hs trả lời
x3 = b (1)
 Với mọi b thuộc R thì pt (1) luôn có nghiệm duy nhất 
 x4=b (2)
Nếu b<0 thì pt (2) vô nghiêm 
Nếu b = 0 thì pt (2) có nghiệm duy nhất x = 0
Nếu b>0 thì pt (2) có 2 nghiệm phân biệt đối nhau .
-HS suy nghĩ và trả lời 
2.Phương trình :
a)Trường hợp n lẻ :
Với mọi số thực b, phương trình có nghiệm duy nhất.
b)Trường hợp n chẵn :
 +Với b < 0, phương trình vô nghiệm 
 +Với b = 0, phương trình có một nghiệm x = 0 ;
 +Với b > 0, phương trình có 2 nghiệm đối nhau .
HĐTP3:Hình thành khái niệm căn bậc n 
Tg
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
- Nghiệm nếu có của pt xn = b, với n2 được gọi là căn bậc n của b
CH1: Có bao nhiêu căn bậc lẻ của b ?
CH2: Có bao nhiêu căn bậc chẵn của b ?
-GV tổng hợp các trường hợp. Chú ý cách kí hiệu 
Ví dụ : Tính ?
CH3: Từ định nghĩa chứng minh :
 = 
-Đưa ra các tính chất căn bậc n .
-Ví dụ : Rút gọn biểu thức 
a)
b)
+Củng cố,dặn dò.
+Bài tập trắc nghiệm.
+Hết tiết 2.
HS dựa vào phần trên để trả lời .
HS vận dụng định nghĩa để chứng minh. 
Tương tự, học sinh chứng minh các tính chất còn lại. 
Theo dõi và ghi vào vở
HS lên bảng giải ví dụ 
3.Căn bậc n :
a)Khái niệm :
 Cho số thực b và số nguyên dương n (n2). Số a được gọi là căn bậc n của b nếu an = b.
 Từ định nghĩa ta có :
Với n lẻ và bR:Có duy nhất một căn bậc n của b, kí hiệu là 
Với n chẵn và b<0: Không tồn tại căn bậc n của b;
Với n chẵn và b=0: Có một căn bậc n của b là số 0;
Với n chẵn và b>0: Có hai căn trái dấu, kí hiệu giá trị dương là , còn giá trị âm là .
b)Tính chất căn bậc n :
khi n lẻ
khi n chẵn
Tiết 3:
HĐTP4: Hình thành khái niệm luỹ thừa với số mũ hữu tỉ
Tg
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
-Với mọi a>0,mZ,n luôn xác định .Từ đó GV hình thành khái niệm luỹ thừa với số mũ hữu tỉ. 
-Ví dụ : Tính ?
-Phát phiếu học tập số 2 cho học sinh thảo luận 
Học sinh giải ví dụ
Học sinh thảo luận theo nhóm và trình bày bài giải
4.Luỹ thừa với số mũ hữu tỉ 
 Cho số thực a dương và số hữu tỉ 
, trong đó 
Luỹ thừa của a với số mũ r là ar xác định bởi 
HĐTP5: Hình thành khái niệm lũy thừa với số mũ vô tỉ
Tg
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
Cho a>0, là số vô tỉ đều tồn tại dãy số hữu tỉ (rn) có giới hạn là và dãy () có giới hạn không phụ thuộc vào việc chọn dãy số (rn). Từ đó đưa ra định nghĩa.
Học sinh theo dõi và ghi chép.
5.Luỹ thừa với số mũ vô tỉ: 
 SGK
Chú ý: 1= 1, R
Hoạt động 2: Tính chất của lũy thừa với số mũ thực:
HĐTP1: 
Tg
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
- Nhắc lại tính chất của lũy thừa với số mũ nguyên dương.
- Giáo viên đưa ra tính chất của lũy thừa với số mũ thực, giống như tính chất của lũy thừa với số mũ nguyên dương
-Bài tập trắc nghiệm.
Học sinh nêu lại các tính chất.
II. Tính chất của luỹ thừa với số mũ thực: 
 SGK
 Nếu a > 1 thì kck
 Nếu a < 1thì kck
HĐTP2: Giải các ví dụ:
Củng cố: ()
 +Khái niệm:
 nguyên dương , có nghĩa a.
 hoặc = 0 , có nghĩa .
 số hữu tỉ không nguyên hoặc vô tỉ , có nghĩa .
 +Các tính chất chú ý điều kiện.
 +Bài tập về nhà:-Làm các bài tập SGK trang 55,56.
Phụ lục:
Phiếu học tập:
 Phiếu học tập1: 
 Tính giá trị biểu thức: 
 Phiếu học tập2:
 Tính giá trị biểu thức: với a > 0,b > 0, 
Bảng phụ: Hình 26, hình 27 SGK trang 50.
BÀI TẬP LŨY THỪA
Tuần: 	Tiết:
Mục tiêu:
Về kiến thức: 
Nắm được định nghĩa lũy thừa với số mũ nguyên , căn bậc n ,lũy thừ với số mũ hữu tỉ
Về kỹ năng: 
Biết cách áp dụng các tính chất của lũy thừa với số mũ thực để giải toán
Về tư duy thái độ: 
Rèn luyện tính tự giác luyện tập để khắc sâu kiến thức đã học
Chuẩn bị:
Giáo viên: Giáo án , phiếu học tập , bảng phụ ( Nếu có)
Học sinh: Chuẩn bị bài tập
Phương pháp: 
Đàm thoại – Vấn đáp
Tiến trình bài học:
Ổn định tổ chức 
Kiểm tra bài cũ 
Bài mới :
Hoạt động 1 :
Tg
HĐGV
HĐHS
Ghi bảng
7’
+ Các em dùng máy tính bỏ túi tính các bài toán sau 
+ Kiểm tra lại kết quả bằng phép tính
+Gọi học sinh lên giải
+Cho học sinh nhận xét bài làm của bạn
+ Giáo viên nhận xét , kết luận 
+ Cả lớp cùng dùng máy ,tính các câu bài 1
+ 1 học sinh lên bảng trình bày lời giải
Bài 1 : Tính
a/ 
b/ 
c/ 
 Hoạt động 2 :
Tg
HĐGV
HĐHS
Ghi bảng
20’ 
+ Nhắc lại định nghĩa lũy thừa với số mũ hữu tỉ 
+Vận dụng giải bài 2
+ Nhận xét
+ Nêu phương pháp tính 
+ Sử dụng tính chất gì ?
+ Viết mỗi hạng tử về dạng lũy thừa với số mũ hữu tỉ 
+ Tương tự đối với câu c/,d/
+ Học sinh lên bảng giải
+ Nhân phân phối 
 + T/c : am . an = am+n
+ 
Bài 2 : Tính
a/ 
b/ 
c/ 
d/ 
Bài 3 :
a/ 
b/ 
c/ 
d/ 
 Hoạt động 3:
Tg
HĐGV
HĐHS
Ghi bảng
10’
+ Gọi hs giải miệng tại chỗ 
+ Học sinh trả lời
Bài 4: a) 2-1 , 13,75 , 
b) 980 , 321/5 , 
+ Nhắc lại tính chất
 a > 1 
0 < a < 1
+ Gọi hai học sinh lên bảng trình bày lời giải
 x > y 
 x < y
Bài 5: CMR
a) 
b) 
Củng cố toàn bài :
Hướng dẫn học bài ở nhà và ra bài tập về nhà :
 a. Tính giá trị của biểu thức sau: A = (a + 1)-1 + (b + 1)-1
 khi a = và b = 
 b. Rút gọn : 
HÀM SỐ LUỸ THỪA
Tuần: 	Tiết:
Mục tiêu
Về kiến thức :
Nắm được khái niệm hàm số luỹ thừa.
Tính được đạo hàm của hàm số luỹ thừa và khảo sát hàm số luỹ thừa
Về kĩ năng : 
Thành thạo các bước tìm tập xác định , tính đạo hàm và các bước khảo sát hàm số luỹ thừa
Về tư duy , thái độ:
Biết nhận dạng baì tập
Cẩn thận,chính xác
Chuẩn bị
Giáo viên :Giáo án , bảng phụ ,phiếu học tập
Học sinh : ôn tập kiên thức,sách giáo khoa.
Phương pháp :
Hoạt động nhóm.
Vấn đáp.
Nêu và giải quyết vấn đề
Tiến trình bài học
Ổn định lớp :(2’)
Kiểm tra bài cũ
Nhắc lại các quy tắc tính đạo hàm 
Bài mới:
* Hoạt động 1: 	Khái niệm 15’
Tiết 1 : 
TG
Hoạt động của giáo viên
Hoạt động của sinh
Nội dung ghi bảng
Thế nào là hàm số luỹ thừa , cho vd minh hoạ?.
- Giáo viên cho học sinh cách tìm txđ của hàm số luỹ thừa cho ở vd ;a bất kỳ .
-Kiểm tra , chỉnh sửa
Trả lời.
- Phát hiện tri thức mới
- Ghi bài
Giải vd
I)Khái niệm : 
Hàm số R ; được gọi là hàm số luỹ thừa 
Vd : 
* Chú ý
Tập xác định của hàm số luỹ thừa tuỳ thuộc vào giá trị của
- nguyên dương ; D=R
+
+ a không nguyên; D = (0;+)
VD2 : Tìm TXĐ của các hàm số ở VD1
* Hoạt động 2: Đạo hàm của HSố luỹ thừa (17’)
TG
Hoạt động của giáo viên
Hoạt động của sinh
Nội dung ghi bảng
Nhắc lai quy tắc tính đạo hàm của hàm số
- Dẫn dắt đưa ra công thức tương tự 
- Khắc sâu cho hàm số công thức tính đạo hàm của hàm số hợp 
- Cho vd khắc sâu kiến thức cho hàm số
- Theo dõi , chình sữa
Trả lời kiến thức cũ
- ghi bài
- ghi bài
- chú ý
- làm vd
II) Đạo hàm cuả hàm số luỹ thừa
Vd3: 
*Chú ý:
VD4: 
* Hoạt động 3: Củng cố dặn dò
Đưa ra phiếu học tập cho học sinh thảo luận nhóm 
*Phiêú học tập 1
*Tiết 2 : Khảo sát hàm số luỹ thừa
TG
Hoạt động của giáo viên
Hoạt động của sinh
Nội dung ghi bảng
15’
- Giáo viên nói sơ qua khái niệm tập khảo sát
- Hãy nêu lại các bước khảo sát sự biến thiên và vẽ đồ thị hàm số bất kỳ
- Chỉnh sửa
- Chia lớp thành 2 nhóm gọi đại diện lên khảo sát hàm số : ứng với0
- Sau đó giáo viên chỉnh sửa , tóm gọn vào nội dung bảng phụ.
- H: em có nhận xét gì về đồ thị của hàm số 
- Giới thiệu đồ thị của một số thường gặp : 
-Hoạt động HS Vd3 SGK, sau đó cho VD yêu cầu học sinh khảo sát
-Học sinh lên bảng giải
- Hãy nêu các tính chất của hàm số luỹ thừa trên
- Dựa vào nội dung bảng phụ
- Chú ý
- Trả lời các kiến thức cũ
- Đại diện 2 nhóm lên bảng khảo sát theo trình tự các bước đã biết
- ghi bài
- chiếm lĩnh trị thức mới
- TLời : (luôn luôn đi qua điểm (1;1)
-Chú ý
-Nắm lại các baì làm khảo sát
-Theo dõi cho ý kiến nhận xét
-Nêu tính chất
- Nhận xét
III) Khảo sát hàm số luỹ thừa 	
( nội dung ở bảng phụ )
* Chú ý : khi khảo sát hàm số luỹ thừa với số mũ cụ thể , ta phải xét hàm số đó trên toàn bộ TXĐ của nó
Vd : Khảo sát sự biến thiên và vẽ đồ thi hàm số 
- 
- Sự biến thiên
Hàm số luôn nghịch biến trênD 
TC : ;
Đồ thị có tiệm cận ngang là trục hoành,tiệm cận đứng là trục tung
BBT : x - +
 -
 y + 
	 0
Đồ thị: 
- Bảng phụ , tóm tắt
Củng cố:
- Nhắc lại các bước khảo sát sự biến thiên và vẽ đồ thị hàm số và các hàm số của nó .
-Kiểm tra lại sự tiếp thu kiến thức qua bài học .
- Khảo sát sự biến thiên và đồ thị hàm số 
Dặn dò :
- Học lý thuyết
- Làm các bài tập 
Phụ lục 
- Bảng phụ 1:
y = xa , a > 0
y = xa , a < 0
1. Tập khảo sát: (0 ; + ¥).
2. Sự biến thiên:
	y' = axa-1 > 0 , "x > 0
Giới hạn đặc biệt: 
Tiệm cận: Không có
3. Bảng biến thiên:
x 0 	+¥
y’ 	 + 
y	+¥
 0 
1. Tập khảo sát: ( 0 ; + ¥)
2. Sự biến thiên: 
	y' = axa-1 0
Giới hạn đặc biệt: 
Tiệm cận: 
Trục Ox là tiệm cận ngang
Trục Oy là tiệm cận đứng của đồ thị.
3. Bảng biến thiên:
x 0 	+¥
y’ 	 - 
y +¥	
	 0
4. Đồ thị (H.28 với a > 0) 	 4. Đồ thị (H.28 với a < 0)
- Bảng  ... b)
H1: hãy nhận xét sự tương giao 2 đồ thị trên
* Xét dạng: ax > b
H2: khi nào thì x> loga b và 
 x < loga b
- Chia 2 trường hợp:
a>1 , 0<a 
GV hình thành cách giải trên bảng
-1 HS nêu dạng pt mũ
+ HS theo dõi và trả lời:
b>0 :luôn có giao điểm
b: không có giaođiểm
-HS suy nghĩ trả lời
-Hs trả lời tập nghiệm
I/Bất phương trình mũ :
1/ Bất phương trình mũ cơ bản:
(SGK)
HĐ2: Ví dụ minh hoạ 
Tg
HĐGV
HĐHS
Ghi bảng
5/
Hoạt động nhóm:
Nhóm 1 và 2 giải a
Nhóm 3 và 4 giảib
-Gv: gọi đại diện nhóm 1và 3 trình bày trên bảng
Nhóm còn lại nhận xét
GV: nhận xét và hoàn thiện bài giải trên bảng
* H3:em nào có thể giải được bpt 2x < 16
Các nhóm cùng giải
-đại diện nhóm trình bày, nhóm còn lại nhận xét bài giải
HS suy nghĩ và trả lời
Ví dụ: giải bpt sau:
a/ 2x > 16
b/ (0,5)x 
HĐ3:củng cố phần 1
Tg
HĐGV
HĐHS
Ghi bảng
5/
Dùng bảng phụ:yêu cầu HS điền vào bảng tập nghiệm bpt:
a x < b, ax , ax 
GV hoàn thiện trên bảng phụ và cho học sinh chép vào vở.
- Đại diện học sinh lên bảng trả lời.
- Học sinh còn lại nhận xét và bổ sung.
HĐ4: Giải bpt mũ đơn giản
Tg
HĐGV
HĐHS
Ghi bảng
17/
GV: Nêu một số pt mũ đã học,từ đó nêu giải bpt
-cho Hs nhận xét vp và đưa vế phải về dạng luỹ thừa
-Gợi ý HS sử dụng tính đồng biến hàm số mũ
 -Gọi HS giải trên bảng
GV gọi hS nhận xét và hoàn thiện bài giải
GV hướng dẫn HS giải bằng cách đặt ẩn phụ
Gọi HS giải trên bảng
GV yêu cầu HS nhận xét sau đó hoàn thiện bài giải của VD2
-trả lời đặt t =3x 
 1HS giải trên bảng
-HScòn lại theo dõi và nhận xét
2/ giải bpt mũ đơn giản 
VD1:giải bpt (1)
Giải:
(1)
VD2: giải bpt:
9x + 6.3x – 7 > 0 (2)
 Giải:
Đặt t = 3x , t > 0
Khi đó bpt trở thành
t 2 + 6t -7 > 0 (t> 0)
HĐ5: Cũng cố:Bài tập TNKQ( 5 phút)
Bài1: Tập nghiệm của bpt : 
 A ( -3 ; 1) B: ( -1 ; 3) C: ( 0 ; 3 ) D: (-2 ; 0 )
Bài 2: Tập nghiệm bpt : 2-x + 2x là:
 A:R B: C: D : S= 
Tiết 2: Bất phương trình logarit
 HĐ6:Cách giải bất phương trình logarit cơ bản
Tg
HĐGV
HĐHS
Ghi bảng
10/
GV :- Gọi HS nêu tính đơn điệu hàm số logarit
-Gọi HS nêu dạng pt logarit cơ bản,từ đó GV hình thành dạng bpt logarit cơ bản
GV: dùng bảng phụ( vẽ đồ thị hàm số y = loga x và y =b)
Hỏi: Tìm b để đt y = b không cắt đồ thị
GV:Xét dạng: loga x > b 
( )
Hỏi:Khi nào x > loga b, x<loga b 
GV: Xét a>1, 0 <a <1
-Nêu được tính đơn điệu hàm số logarit
y = loga x
- Cho ví dụ về bpt loga rit cơ bản
-Trả lời : không có b
- Suy nghĩ trả lời
I/ Bất phương trình logarit:
1/ Bất phương trìnhlogarit cơ bản:
Dạng; (SGK)
Loga x > b
a > 1 , S =( ab ;+
0<a <1, S=(0; ab )
HĐ7: Ví dụ minh hoạ
Tg
HĐGV
HĐHS
Nội dung
8/
Sử dụng phiếu học tập 1 và2
GV : Gọi đại diện nhóm trình bày trên bảng
GV: Gọi nhóm còn lại nhận xét 
GV: Đánh giá bài giải và hoàn thiện bài giải trên bảng
Hỏi: Tìm tập nghiệm bpt:
Log3 x < 4, Log0,5 x 
Cũng cố phần 1:
GV:Yêu cầu HS điền trên bảng phụ tập nghiệm bpt dạng: loga x , loga x < b
loga x 
GV: hoàn thiện trên bảng phụ
HĐ 8 :Giải bpt loga rit đơn giản
Trả lời tên phiều học tập theo nhóm
-Đại diện nhóm trình bày
- Nhận xét bài giải
-suy nghĩ trả lời
- điền trên bảng phụ, HS còn lại nhận xét
 Ví dụ: Giải bất phương trình:
a/ Log 3 x > 4
b/ Log 0,5 x 
22/
-Nêu ví dụ 1
-Hình thành phương pháp giải dạng :loga f(x)< loga g(x)(1)
+Đk của bpt
+xét trường hợp cơ số
Hỏi:bpt trên tương đương hệ nào?
- Nhận xét hệ có được
GV:hoàn thiện hệ có được:
Th1: a.> 1 ( ghi bảng)
Th2: 0<a<1(ghi bảng)
GV -:Gọi 1 HS trình bày bảng
 - Gọi HS nhận xét và bổ sung
GV: hoàn thiện bài giải trên bảng
GV:Nêu ví dụ 2
-Gọi HS cách giải bài toán
-Gọi HS giải trên bảng
 GV : Gọi HS nhận xét và hoàn thiệnbài giải
- nêu f(x)>0, g(x)>0 và 
-suy nghĩ và trả lời
- ! hs trình bày bảng
-HS khác nhận xét
-Trả lời dùng ẩn phụ
-Giải trên bảng
-HS nhận xét
2/ Giải bất phương trình:
a/Log0,2(5x +10) < log0,2 (x2 + 6x +8 ) (2)
Giải:
(2)
Ví dụ2: Giải bất phương trình:
Log32 x +5Log 3 x -6 < 0(*)
Giải:
Đặt t = Log3 x (x >0 )
Khi đó (*)t2 +5t – 6 < 0
-6< t < 1 <-6<Log3 x <1 3-6 < x < 3
HĐ9: Củng cố: Bài tập TNKQ( 5 phút)
Bài 1:Tập nghiệm bpt: Log2 ( 2x -1 )Log2 (3 – x )
A B C D 
Bài2 ;Tập nghiệm bpt: Log0,1 (x – 1) < 0
A : R B: C: D:Tập rỗng
 Dặn dò: Về nhà làm bài tập 1và 2 trang 89, 90
BÀI TẬP BẤT PHƯƠNG TRÌNH MŨ - BẤT PHƯƠNG LOGARIT
Tuần: 	Tiết:
Mục tiêu:
Về kiến thức; 
Nắm vững phương pháp giải bpt mũ,bpt logarit và vận dụng để giải đượcác bpt mũ ,bpt logarit
Về kỹ năng: 
Sử dụng thành thạo tính đơn điệu hàm số mũ ,logaritvà nhận biết điều kiện bài toán
Về tư duy,thái độ: 
Vận dụng được tính logic, biết đưa bài toán lạ về quen, học tập nghiêm túc, hoạt động tich cực
Chuẩn bị:
Giáo viên: Phiếu học tập, câu hỏi trắc nghiệm
Học sinh : Bài tập giải ở nhà, nắm vững phương pháp giải
Phương pháp : 
Gợi mở, vấn đáp, hoạt động nhóm.
Tiến trình bài học:
Ổn dịnh:
Kiểm tra bài cũ: 3’ 
Giải bpt sau:a./ Log 2 (x+4) 125
Bài mới
HĐ1: Giải bpt mũ
Tg
HĐGV
HĐHS
Ghi bảng
15’
10
HĐTP1-Yêu cầu học sinh nêu phương pháp giải bpt ax > b
 a x < b
- GVsử dụng bảng phụ ghi tập nghiêm bpt
GV phát phiếu học tập1 và 2
- Giao nhiệm vụ các nhóm giải
-Gọi đại diện nhóm trình bày trên bảng,các nhóm còn lại nhận xét
GV nhận xét và hoàn thiện bài giải
HĐTP2:GV nêu bài tập
Hướng dẫn học sinh nêu cách giải 
-Gọi HS giải trên bảng
-Gọi HS nhận xét bài giải
- GV hoàn thiện bài giải 
- Trả lời
- HS nhận xét
- Giải theo nhóm
- Đại diện nhóm trình bày lời giải trên bảng
-Nhận xét
-Nêu các cách giải
-HSgiải trên bảng
- Nhận xét
Bài 1: Giải bpt sau:
1/ (1)
2/ (2)
Giải:
(1)
(2)
Bài tập2 :giải bpt
4x +3.6x – 4.9x < 0(3)
Giải:
(3)
Đặt t = bpt trở thành t2 +3t – 4 < 0
Do t > 0 ta đươc 0< t<1
HĐ2: Giải bpt logarit
Tg
HĐGV
HĐHS
Nội dung
12’
-Gọi HS nêu cách giải bpt
Loga x >b ,Loga x <b và ghi tập nghiệm trên bảng
GV : phát phiếu học tập 3,4
Gọi đại diện nhóm trả lời
Gọi HS nhận xét 
GV hoàn thiện bài giải 
-Nêu cách giải
Nhóm giải trên phiếu học tập 
Đại diện nhóm trình bày trên bảng 
Nhóm còn lại nhận xét 
Củng cố : 5’
Bài 1: tập nghiệm bất phương trình : .
A. 	B. 	C. 	D. 
Bài 2: Tập nghiệm bất phương trình: .
A. (3; +)	B. (2; 3)	C. (-; 2)	D. (-; 3)
Dặn dò: 
Về nhà làm bài tập 8/90 SGK 
Phụ lục: 
Phiếu học tập 3
Phiếu học tập 4
ÔN TẬP CHƯƠNG II
Tuần: 	Tiết:
Mục tiêu:
Về kiến thức: 
Qua bài học này giúp học sinh hệ thống các kiến thức về hàm số lũy thừa, mũ, lôgarit. Cụ thể:
Phát biểu được định nghĩa lũy thừa với số mũ 0, Lũy thừa với số mũ nguyên, lũy thừa với số mũ hữu tỷ, lũy thừa với số mũ thực.
Phát biểu được định nghĩa, viết các công thức về tính chất của hàm số mũ.
Phát biểu được định nghĩa, viết các công thức về tính chất của lôgarit, lôgarit thập phân, lôgarit tự nhiên, hàm số lôgarit. 
Về kỹ năng: Học sinh rèn luyện các kỹ năng sau:
Sử dụng các quy tắc tính lũy thừa và lôgarit để tính các biểu thức, chứng minh các đẳng thức liên quan.
Giải phương trình, hệ phương trình, bất phương trình mũ và lôgarit.
Về tư duy thái độ: 
Rèn luyện tư duy biện chứng, thái độ học tập tích cực, chủ động.
Chuẩn bị:	
Giáo viên: Giáo án, phiếu học tập, bảng phụ, Sách giáo khoa.
Học sinh: Ôn tập lại lí thuyết và giải các bài tập về nhà
Phương pháp: 
Vấn đáp giải quyết vấn đề và kết hợp các phương pháp dạy học khác.
Tiến trình bài học: 
Ổn định lớp:
Kiểm tra bài cũ: ( 8’ )
Câu hỏi 1: Nêu định nghĩa và các tính chất của hàm số luỹ thừa?
Câu hỏi 2: Hãy hoàn thiện bảng sau: 
Tính chất
Hàm số mũ
Hàm số lôgarit
Tập xác định
D = (0; +)
Đạo hàm
Chiều biến thiên
* Nếu thì hàm số đồng biến trên 
* Nếu thì hàm số nghịch biến trên 
Tiệm cận
Tiệm cận đứng là trục Oy
Dạng đồ thị
Bài mới:
Hoạt động 1: Sử dụng các tính chất của hàm số mũ và lôgarit để giải các bài tập sau:
 a) Cho biết tính 
 b) Cho biết tính 
Tg
HĐGV
HĐHS
Ghi bảng
8’
7’
- Gọi học sinh nhắc lại các tính chất của hàm số mũ và lôgarit .
- Yêu cầu học sinh vận dụng làm bài tập trên.
- Trả lời theo yêu cầu của giáo viên.
- Thảo luận và lên bảng trình bày.
a) 
b) Ta có:
Hoạt động 2: Giải các phương trình mũ và lôgarit sau:
 a) 
 b) 
 c) 
Tg
HĐGV
HĐHS
Ghi bảng
5’
7’
10’
- Gọi học sinh nhắc lại phương pháp giải phương trình mũ.
- Yêu cầu học sinh vận dụng làm bài tập trên.
- Gọi học sinh nhắc lại phương pháp giải phương trình lôgarit.
- Tìm điều kiện để các lôgarit có nghĩa?
- Hướng dẫn hs sử dụng các công thức
+ 
+ 
+ để biến đổi phương trình đã cho
- Yêu cầu học sinh vận dụng làm bài tập trên.
- Gọi hoc sinh nhắc lại công thức lôgarit thập phân và lôgarit tự nhiên.
- Cho học sinh quan sát phương trình c) để tìm phương pháp giải.
- Giáo viên nhận xét, hoàn chỉnh lời giải.
- Trả lời theo yêu cầu của giáo viên.
Nếu thì pt (*) VN
Nếu thì pt (*) có nghiệm duy nhất 
- Thảo luận và lên bảng trình bày
- Trả lời theo yêu cầu của giáo viên.
Đk: 
- Thảo luận và lên bảng trình bày.
- Nhắc lại theo yêu cầu của giáo viên.
- Thảo luận để tìm phương pháp giải.
a) 
b) (*)
Đk: 
c) (3)
(3)
TIẾT 2
Hoạt động 3: Giải các bất phương trình sau :
 a) 
 b) 
Tg
HĐGV
HĐHS
Ghi bảng
15’
15’
- Gọi học sinh đưa các cơ số trong phương trình a) về dạng phân số và tìm mối liên hệ giữa các phân số đó.
- Yêu cầu học sinh vận dụng giải bất phương trình trên.
- Cho hs nêu phương pháp giải bpt lôgarit: 
- Hướng dẫn cho hoc sinh vận dụng phương pháp trên để giải bpt.
-Giáo viên nhận xét và hoàn thiện lời giải của hoc sinh.
- Trả lời theo yêu cầu của giáo viên.
Nếu đặt thì 
- Thảo luận và lên bảng trình bày.
- Trả lời theo yêu cầu của gv.
Đk: 
+ Nếu thì
(*) 
+ Nếu thì
(*) 
- Thảo luận và lên bảng trình bày.
a) 
b) (*)
Đk: 
Tập nghiệm 
Củng cố:( 5’ )
Nêu tính đồng biến nghich biến của hàm số mũ và lôgarit.
Nêu các phương pháp giải phương trình mũ và phương trình lôgarit.
Hướng dẫn học bài ở nhà và bài tập về nhà ( 5’ )
Xem lại các kiến thức đã học trong chương II, Làm các bài tập còn lại ở SGK và SBT.
Chuẩn bị kiểm tra 1 tiết chương II
* Bài tập về nhà: Giải các phương trình và bất phương trình sau:
a) 
b) (*)
c) 
* Hướng dẫn giải: 
a) Ta có: KQ : 
b) Ta có: ; có là nghiệm và hàm số : là hàm số đồng biến;
 là hàm số nghịch biến. KQ : x = 1
c) Tập nghiệm bất phương trình 
V – Phụ lục : 
 1. Phiếu học tập:
 a) phiếu học tập 1
Sử dụng các tính chất của hàm số mũ và lôgarit để giải các bài tập sau:
 a) Cho biết tính 
 b) Cho biết tính 
 b) phiếu học tập 2
Giải các phương trình mũ và lôgarit sau:
 a) 
 b) 
 c) 
 c) phiếu học tập 3
Giải các bất phương trình sau :
 a) 
 b) 
2. Bảng phụ :
Tính chất
Hàm số mũ
Hàm số lôgarit
TXĐ
D = R
D = (0; +)
Đạo hàm
CBT
* Nếu thì hàm số ĐB trên R
* Nếu thì hàm số NB trên R
* Nếu thì hàm số ĐB trên 
* Nếu thì hàm số NB trên 
Tiệm cận
Tiệm cận ngang là trục Ox
Tiệm cận đứng là trục Oy
Đồ thị
Đồ thị đi qua điểm A(0;1) và điểm B(1;a), nằm phía trên trục hoành
Đồ thị đi qua điểm A(1;0) và điểm B(a;1), nằm phía bên phải trục tung.

Tài liệu đính kèm:

  • docGiai Tich 12 - Chuong 2.doc