Giáo án Giải tích 12 - Trường THPT Lê Trung Đình - Chương: Nguyên hàm

Giáo án Giải tích 12 - Trường THPT Lê Trung Đình - Chương: Nguyên hàm

NGUYÊN HÀM

I. Mục đích yêu cầu:

1. Về kiến thức:

- Hiểu được định nghĩa nguyên hàm của hàm số trên K, phân biệt rõ một nguyên hàm với họ nguyên hàm của một hàm số.

- Biết các tính chất cơ bản của nguyên hàm.

- Nắm được các phương pháp tính nguyên hàm.

2. Về kĩ năng:

- Tìm được nguyên hàm của một số hàm số tương đối đơn giản dựa vào bảng nguyên hàm và các tính chất của nguyên hàm.

- Sử dụng phương pháp đổi biến số, phương pháp tính nguyên hàm từng phần để tính nguyên hàm.

 

doc 63 trang Người đăng ngochoa2017 Lượt xem 1187Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án Giải tích 12 - Trường THPT Lê Trung Đình - Chương: Nguyên hàm", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tiết : 49-50	Ngày soạn :26-12-2010	 Ngày dạy:27-12-2010
NGUYÊN HÀM
I. Mục đích yêu cầu:
1. Về kiến thức:
- Hiểu được định nghĩa nguyên hàm của hàm số trên K, phân biệt rõ một nguyên hàm với họ nguyên hàm của một hàm số.
- Biết các tính chất cơ bản của nguyên hàm.
- Nắm được các phương pháp tính nguyên hàm.
2. Về kĩ năng:
- Tìm được nguyên hàm của một số hàm số tương đối đơn giản dựa vào bảng nguyên hàm và các tính chất của nguyên hàm.
- Sử dụng phương pháp đổi biến số, phương pháp tính nguyên hàm từng phần để tính nguyên hàm.
3. Về tư duy, thái độ:
- Thấy được mối liên hệ giữa nguyên hàm và đạo hàm của hàm số.
- Cẩn thận, chính xác, nghiêm túc, tích cực phát biểu xây dựng bài.
II. Chuẩn bị:
1. Giáo viên: Giáo án, bảng phụ, phiếu học tập.
2. Học sinh: SGK, đọc trước bài mới.
III. Tiến trình bài học:
1. Ổn định lớp: Kiểm tra sỉ số, tác phong
2. Kiểm tra bài cũ: (3’)
Câu hỏi: Tìm đạo hàm các hàm số sau:
a/ y = x3 b/ y = tan x
3. Bài mới:
Tiết1: Nguyên hàm và các tính chất của nguyên hàm.
Tiết 2: Phương pháp tính nguyên hàm bằng cách đổi biến số.
Tính nguyên hàm bằng phương pháp tính nguyên hàm từng phần.
Tiết 49
HĐGV
HĐHS
Nội dung
HĐ1: Nguyên hàm
HĐTP1: Hình thành khái niệm nguyên hàm
- Yêu cầu học sinh thực hiện HĐ1 SGK.
- Từ HĐ1 SGK cho học sinh rút ra nhận xét (có thể gợi ý cho học sinh nếu cần)
- Từ đó dẫn đến việc phát biểu định nghĩa khái niệm nguyên hàm (yêu cầu học sinh phát biểu, giáo viên chính xác hoá và ghi bảng)
HĐTP2: Làm rõ khái niệm
- Nêu 1 vài vd đơn giản giúp học sinh nhanh chóng làm quen với khái niệm (yêu cầu học sinh thực hiện)
H1: Tìm Ng/hàm các hàm số:
a/ f(x) = 2x trên (-∞; +∞)
 1
b/ f(x) = trên (0; +∞)
 x
c/ f(x) = cosx trên (-∞; +∞)
HĐTP3: Một vài tính chất suy ra từ định nghĩa.
- Yêu cầu học sinh thực hiện HĐ2 SGK.
- Từ đó giáo viên giúp học sinh nhận xét tổng quát rút ra kết luận là nội dung định lý 1 và định lý 2 SGK.
- Yêu cầu học sinh phát biểu và C/M định lý.
- Thực hiện dễ dàng dựa vào kquả KTB cũ.
- Nếu biết đạo hàm của một hàm số ta có thể suy ngược lại được hàm số gốc của đạo hàm.
- Phát biểu định nghĩa nguyên hàm (dùng SGK)
- Học sinh thực hiện được 1 cách dễ dàng nhờ vào bảng đạo hàm.
TH:
a/ F(x) = x2
b/ F(x) = lnx
c/ F(x) = sinx
a/ F(x) = x2 + C
b/ F(x) = lnx + C
c/ F(x) = sinx + C
(với C: hằng số bất kỳ)
- Học sinh phát biểu định lý (SGK).
I. Nguyên hàm và tính chất 
1. Nguyên hàm
Kí hiệu K là khoảng, đoạn hoặc nữa khoảng của IR.
Định nghĩa: (SGK/ T93)
VD: 
a/ F(x) = x2 là ng/hàm hàm số
 f(x) = 2x trên (-∞; +∞)
b/ F(x) = lnx là ng/hàm của
 1
hàm số f(x) = trên (0; +∞)
 x
c/ F(x) = sinx là ng/hàm của h/số f(x) = cosx trên (-∞; +∞)
Định lý1: (SGK/T93)
C/M.
HĐGV
HĐHS
Nội dung
- Từ định lý 1 và 2 (SGK) nêu K/n họ nguyên hàm của h/số và kí hiệu.
- Làm rõ mối liên hệ giữa vi phân của hàm số và nguyên hàm của nó trong biểu thức. (Giáo viên đề cập đến thuật ngữ: tích phân không xác định cho học sinh)
HĐTP4: Vận dụng định lý
- H/s làm vd2 (SGK): Giáo viên có thể hướng dẫn học sinh nếu cần, chính xác hoá lời giải của học sinh và ghi bảng.
HĐ2: Tính chất của nguyên hàm.
HĐTP1: Mối liên hệ giữa nguyên hàm và đạo hàm:
- Từ đ/n dễ dàng giúp học sinh suy ra tính chất 1 (SGK)
- Minh hoạ tính chất bằng vd và y/c h/s thực hiện.
HĐTP2: Tính chất 2 (SGK)
- Yêu cầu học sinh phát biểu tính chất và nhấn mạnh cho học sinh hằng số K+0
- HD học sinh chứng minh tính chất.
HĐTP3: Tính chất 3
- Y/cầu học sinh phát biểu tính chất.
- Thực hiện HĐ4 (SGK)
(giáo viên hướng dẫn học sinh nếu cần)
- Chú ý
- H/s thực hiện vd
- Phát biểu tính chất 1 (SGK)
- H/s thực hiện vd
- Phát biểu tính chất.
- Phát biểu dựa vào SGK.
- Thực hiện
Định lý2: (SGK/T94)
C/M (SGK)
 ∫f(x) dx = F(x) + C
C Є R
Là họ tất cả các nguyên hàm của f(x) trên K
*Chú ý:
f(x)dx là vi phân của ng/hàm F(x) của f(x) vì dF(x) = F’(x)dx = f(x)dx.
Vd2:
a/ ∫2xdx = x2 + C; x Є(-∞; +∞)
b/ ∫1/sds = ln s + C; s Є(0; +∞)
c/ ∫costdt = sint + C; t Є(0; +∞)
2. Tính chất của nguyên hàm
Tính chất 1:
 ∫f’(x) dx = f(x) + C
Vd3:
∫(cosx)’dx = ∫(-sin)dx = cosx + C
Tính chất2:
 ∫kf(x) dx = k ∫f(x) dx
k: hằng số khác 0
C/M: (SGK)
Tính chất 3:
∫[f(x) ± g(x)]dx=∫f(x)dx ±∫g(x)dx 
C/M: Chứng minh của học sinh được chính xác hoá.
HĐGV
HĐHS
Nội dung
- Minh hoạ tính chất bằng vd4 SGK và yêu cầu học sinh thực hiện.
- Nhận xét, chính xác hoá và ghi bảng.
HĐ3: Sự tồn tại của nguyên hàm
- Giáo viên cho học sinh phát biểu và thừa nhận định lý 3.
- Minh hoạ định lý bằng 1 vài vd 5 SGK (y/c học sinh giải thích)
HĐ4: Bảng nguyên hàm
- Cho học sinh thực hiện hoạt động 5 SGK.
- Treo bảng phụ và y/c học sinh kiểm tra lại kquả vừa thực hiện.
- Từ đó đưa ra bảng kquả các nguyên hàm của 1 số hàm số thường gặp.
- Luyện tập cho học sinh bằng cách yêu cầu học sinh làm vd6 SGK và 1 số vd khác gv giao cho.
- HD h/s vận dụng linh hoạt bảng hơn bằng cách đưa vào các hàm số hợp.
- Học sinh thực hiện
Vd: 
Với x Є(0; +∞)
Ta có:
∫(3sinx + 2/x)dx = 3∫(sin)dx + 2∫1/xdx = 
-3cosx + 2lnx +C
- Phát biểu định lý
- Thực hiện vd5
- Thực hiện HĐ5
- Kiểm tra lại kquả
- Chú ý bảng kquả
- Thực hiện vd 6
a/ = 2∫x2dx + ∫x-2/3dx = 2/3x3 + 3x1/3 + C.
b/ = 3∫cosxdx - 1/3xdx 
 1 3x
= 3sinx - +C
 3 ln3
c/ = 1/6(2x + 3)6 + C
d/ = ∫sinx/cosx dx
 = - ln/cosx/ +C
Vd4: Tìm nguyên hàm của hàm số f(x) = 3sinx + 2/x trên khoảng (0; +∞)
Giải:
Lời giải của học sinh đã chính xác hoá.
3. Sự tồn tại của nguyên hàm 
Định lý 3: (SGK/T95)
Vd5: (SGK/T96)
4. Bảng nguyên hàm của một số hàm số thường gặp:
Bảng nguyên hàm:
(SGK/T97)
Vd6: Tính
 1
a/ ∫[2x2 + ─ ]dx trên (0; +∞)
 3√x2
b/ ∫(3cosx - 3x-1) dx trên (-∞; +∞)
c/ ∫2(2x + 3)5dx
d/ ∫tanx dx
Tiết 50
HĐGV
HĐHS
Nội dung
HĐ5: Phương pháp đổi biến số
HĐTP1: Phương pháp
- Yêu cầu h/s làm hđộng 6 SGK.
- Những bthức theo u sẽ tính được dễ dàng nguyên hàm
- Gv đặt vđề cho học sinh là: ∫(x-1)10dx = ∫udu
Và ∫lnx/x dx = ∫tdt
- HD học sinh giải quyết vấn đề bằng định lý 1(SGKT98)
- HD h/s chứng minh định lý 
- Từ định lý y/c học sinh rút ra hệ quả và phát biểu.
- Làm rõ định lý bằng vd7 (SGK) (yêu cầu học sinh thực hiện)
- Lưu ý học sinh trở lại biến ban đầu nếu tính nguyên hàm theo biến mới.
HĐTP2: Rèn luyện tính nguyên hàm hàm số bằng p2 đổi biến số.
- Nêu vd và y/c học sinh thực hiện. HD học sinh trả lời bằng 1 số câu hỏi 
H1: Đặt u như thế nào?
H2: Viết tích phân bất định ban đầu thẽo?
H3: Tính?
H4: Đổi biến u theo x
- Nhận xét và chính xác hoá lời giải.
- Thực hiện
a/ (x-1)10dx chuyển thành u10du.
b/ lnx/x dx chuyển thành : t
 ─ etdt = tdt
 et
- Phát biểu định lý 1 (SGK/T98)
- Phát biểu hệ quả
- Thực hiện vd7 
Vì ∫sinudu = -cosu + C
Nên: ∫sin (3x-1)dx
= -1/3 cos (3x - 1) + C
- Thực hiện vd:
Đặt u = x + 1
Khi đó: ∫x/(x+1)5dx
= ∫ u-1/u5 du
= ∫1/u4 du - ∫1/u5 du
 1 1 1 1 
= - ─ . ─ + ─ ─ + C
 3 u3 4 u4
 1 1 1 1 
= - ─ . ─ + ─ ─ + C
 3 (x+1)3 4 (x+1)4
 1 1 1 
= ─ [- ─ + ─ ]+ C
(x+1)3 3 4(x+1)
II. Phương pháp tính nguyên hàm 
1. Phương pháp đổi biến số
Định lý1: (SGK/ T98)
C/M (SGK)
Hệ quả: (SGK/ T98)
∫f(ax+b)dx=1/a F(ax+b) + C 
(a + 0)
VD7: Tính ∫sin (3x -1)dx
* Chú ý: (SGK/ T98)
Vd8 (SGK)
Tính ∫x/(x+1)5 dx
Giải:
Lời giải học sinh được chính xác hoá
HĐGV
HĐHS
Nội dung
- Nêu vd9; yêu cầu học sinh thực hiện. GV có thể hướng dẫn thông qua 1 số câu hỏi:
H1: Đổi biến như thế nào?
H2: Viết tích phân ban đầu theo u
H3: Tính dựa vào bảng nguyên hàm.
- Từ những vd trên và trên cơ sở của phương pháp đổi biến số y/cầu học sinh lập bảng nguyên hàm các hàm số cấp ở dạng hàm số hợp: dạng: f(u) với u = u (x)
- Học sinh thực hiện
a/ 
Đặt U = 2x + 1
U’ = 2
∫2 e 2x+1 dx = ∫ eu du
= eu + C
= e 2x+1 + C
b/ Đặt U = x5 + 1
U’ = 5 x4
 ∫ 5 x4 sin (x5 + 1)dx
= ∫ sin u du = - cos u +c 
= - cos (x5 + 1) + c 
- Học sinh thực hiện
Vd9: Tính 
a/ ∫2e2x +1 dx
b/ ∫ 5 x4 sin (x5 + 1)dx
Giải: Lời giải học sinh được chính xác hoá .
- Bảng nguyên hàm 1 số hàm số sơ cấp ở dạng hàm số hợp.
(bảng phụ)
HĐGV
HĐHS
Nội dung
HĐ6: Phương pháp nguyên hàm từng phần.
HĐTP1: Hình thành phương pháp.
- Yêu cầu và hướng dẫn học sinh thực hiện hoạt động 7 SGK.
- Từ hoạt động 7 SGK hướng dẫn học sinh nhận xét và rút ra kết luận thay U = x và V = cos x.
- Từ đó yêu cầu học sinh phát biểu và chứng minh định lý
- Lưu ý cho học sinh cách viết biểu thức của định lý:
 V’(x) dx = dv
U’ (x) dx = du
HĐTP2: Rèn luyện tính nguyên hàm hàm số bằng phương pháp nguyên hàm từng phần.
- Nêu vd 9 SGK yêu cầu học sinh thực hiện. GV có thể hướng dẫn thông qua các câu hỏi gợi ý:
Đặt u = ?
Suy ra du = ? , dv = ?
Áp dụng công thức tính
- Nhận xét , đánh giá kết quả và chính xác hoá lời giải , ghi bảng ngắn gọn và chính xác lời giải.
- Từ vd9: yêu cầu học sinh thực hiện HĐ8 SGK 
- Nêu 1 vài ví dụ yêu cầu học sinh thực hiện tính khi sử dụng phương pháp nguyeê hàm từng phần ở mức độ linh hoạt hơn.
- GV hướng dẫn học sinh thực hiện tính (lặp lại tính nguyên hàm 1 số lần )
- Nhận xét và chính xác hoá kết quả.
HĐ7: Củng cố:
- Yêu cầu học sinh nhắc lại :
+ Định nghĩa nguyên hàm hàm số 
+ Phương pháp tính nguyên hàm bằng cách đảo biến số và phương pháp nguyên hàm từng phần .
- Thực hiện:
∫(x cos x)’ dx = x cos + C1
∫cosx dx = Sin x + C2
Do đó: 
∫x sin x dx = - x cosx
+ sin x + C (C = - C1 + C2)
- Phát biểu định lý
- Chứng minh định lý:
- Thực hiện vídụ:
a/ Đặt: U = x dv = ex dx
Vậy: du = dx , v = ex
∫x ex dx = x . ex - ∫ ex de - x ex - ex + C
b/ Đặt u = x , dv = cos dx, du = dx , v = sin x 
Do đó:
∫ x cos x dx = x sin x - ∫sin dx = x sin x + cosx + C
c/ Đặt u = lnx, dv = dx
 du = 1/2 dx , v= x 
Do đó:
∫ lnx dx = xlnx - x + c
- Thực hiện 1 cách dễ dàng.
- Thực hiện theo yêu cầu giáo viên
a/ Đặt u = x2 và dv = cosx dx
ta có: du = 2xdx, v = sin x
do đó: 
∫x2 cosxdx = x2 sin x - ∫2x sin x dx 
Đặt u = x và dv = sin x dx
du = dx , v = - cosx
∫x sin x dx = - xcos x + ∫ cos x dx
= - x cos x + sin x + C
Vậy: kết quả = x2 sin x - 2 (- x cosx + sin x +C)
- Nhắc lại theo yêu cầu của giáo viên. 
 2. Phương pháp tính nguyên hàm từng phần:
Định lý 2: (SGK/T99)
∫u (x) v’ (x) dx = u (x) v(x) - ∫u’ (x) v(x) dx
Chứng minh:
*Chú ý: 
∫u dv = u . v - ∫ vdu
VD9: Tính 
a/ ∫ xex dx 
b./ ∫ x cos x dx
c/ ∫ lnx dx.
Giải:
Lời giải học sinh đã chính xác hoá.
VD10: Tính
a/ ∫x2 cos x dx
Giải:
Lời giải của học sinh đã chính xác hoá.
. BÀI TẬP VỀ NHÀ
- Nắm vững các cách tính nguyên hàm của hàm số 
- Làm các bài tập SGK và SBT.
IV. RÚT KINH NGHIỆM, BỔ SUNG:
Tiết :51 	Ngày soạn :2-1-2011	ngày dạy:3-1-2011
BÀI TẬP PHẦN NGUYÊN HÀM
I. Mục đích yêu cầu :
1/ Kiến thức :
Nắm được khái niệm nguyên hàm có một hệ số .
Biết các tính chất cơ bản của nguyên hàm .
2/ Kỹ năng :
Tìm được nguyên hàm của một hàm số tưong đối đơn giản dựa vào bảng nghàm 1 cách tìm nguyên hàm từng phần .
Sử dụng phương pháp đổi biến số để tính nghàm
3/ Tư duy, thái độ :
Thấy được mlg giữa nguyên hàm 1 đạo hàm .
Rèn luyện tính cảm nhận, chính xác. 
II. Chuẩn bị :
GV. - Bảng phụ, sgk, gán, phiếu học tập .
HS. - học thuộc bảng hàm & làm BTVN. 
III.Phương pháp: đàm thoại, vấn đáp, thảo luậ ...  phức.
 	- Rèn tính cẩn thận ,chính xác 
II.Chuẩn bị của giáo viên và học sinh: 
 	* Giáo viên: Soạn giáo án, phiếu học tập ,đồ dùng dạy học .
 	* Học sinh: Xem nội dung bài mới, dụng cụ học tập 
III.Phương pháp: 
* Gợi mở + nêu vấn đề đan xen hoạt động nhóm.
IV.Tiến trình bài học: 
 1.Ổn định lớp. (1’)
 2. Kiểm tra bài cũ: (5’)
Câu hỏi 1:Thế nào là căn bậc hai của một số thực dương a ?
Câu hỏi 2:Viết công thức nghiệm của phương trình bậc hai ?
 3.Bài mới :
HĐGV
HĐHS
Nội dung
 Hoạt động 1:Tiếp cận khái niệm căn bậc 2 của số thực âm
* Ta có: với a > 0 có 2 căn bậc 2 của a là b = ± (vì b² = a)
* Vậy a < 0 có căn bậc 2 của a không ?
Để trả lời cho câu hỏi trên ta thực hiện ví dụ sau: 
Ví dụ 1: Tìm x sao cho 
x² = -1
Vậy số âm có căn bậc 2 không?
Þ -1 có 2 căn bậc 2 là ±i
Ví dụ 2: Tìm căn bậc hai của -4 ?
Tổng quát:Với a<0.Tìm căn bậc 2 của a
Ví dụ : ( Củng cố căn bậc 2 của số thực âm)
Hoạt động nhóm: GV chia lớp thành 4 nhóm, phát phiếu học tập 1, cho HS thảo luận để trả lời.
Chỉ ra được x = ±i
Vì i² = -1
(-i)² = -1
Þ số âm có 2 căn bậc 2 
Ta có( ±2i)²=-4
Þ -4 có 2 căn bậc 2 là 
± 2i
*Ta có (±i)²= -a
Þ có 2 căn bậc 2 của a là ±i 
1.Căn bậc 2 của số thực âm
Với a<0 có 2 căn bậc 2 của a là ±i 
Ví dụ :-4 có 2 căn bậc 2 là ±2i
Hoạt động 2:Cách giải phương trình bậc 2 với hệ số thực 
Nhắc lại công thức nghiệm của phương trình bậc 2: 
ax² + bx + c = 0
 Δ > 0: pt có 2 nghiệm phân biệt:
 x1,2 = 
 Δ = 0: pt có nghiệm kép 
 x1 = x2 = 
 Δ < 0: pt không có nghiệm thực. 
*Trong tập hợp số phức,
Δ < 0 có 2 căn bậc 2, tìm căn bậc 2 của Δ
*Như vậy trong tập hợp số phức,Δ<0 phương trình có nghiệm hay không ?
Nghiệm bao nhiêu ?
Ví dụ :Giải các pt sau trên tập hợp số phức:
 a) x² - x + 1 = 0
Ví dụ 2: (Dùng phiếu học tập 2)
 Chia nhóm ,thảo luận 
* Gọi đại diện mỗi nhóm trình bày bài giải 
→GV nhận xét ,bổ sung (nếu cần).
*Giáo viên đưa ra nhận xét để học sinh tiếp thu. 
Þ 2 căn bậc 2 của Δ là ±i 
Þ Δ < 0 pt có 2 nghiệm phân biệt là:
 x1,2 = 
Δ = -3 < 0: pt có 2 nghiệm phân biệt 
 x1,2 = 
Chia nhóm ,thảo luận theo yêu cầu của giáo viên. 
II.Phương trình bậc 2
 + Δ>0:pt có 2 nghiệm phân biệt
x1,2 = 
 + Δ = 0: pt có nghiệm kép 
x1 = x2 = 
+ Δ<0: pt không có nghiệm thực.
Tuy nhiên trong tập hợp số phức, pt có 2 nghiệm phân biệt
x1,2 = 
Nhận xét:(sgk)
4.Củng cố toàn bài : (5’)
- Nhắc lại căn bậc 2 của 1 số thực âm. 
- Công thức nghiệm pt bậc 2 trong tập hợp số phức. 
- Bài tập củng cố (dùng bảng phụ ).
5.Hướng dẫn học bài ở nhà và ra bài tập về nhà. (2’)
Dặn dò học sinh học lý thuyết và làm bài tập về nhà trong sách giáo khoa. 
V.Phụ lục:
 1. Phiếu học tập 1:
 Tìm căn bậc 2 của các số :-2,-3,-5,-6,-8,-9,-10,-12
 2.Phiếu học tập 2
 Giải các pt sau trong tập hợp số phức 
 a).x² + 4 = 0
 b).-x² + 2x – 5 = 0
 c). x4 – 3x2 – 4 = 0
 d). x4 – 9 = 0
 3.Bảng phụ :
 BT1: Căn bậc 2 của -21là :
 A/ i 	 B/ -i 	 	C/±i	D/ ±
 BT2:Nghiệm của pt x4 – 4 = 0 trong tập hợp số phức là :
 A/ x=± 	 B/ x=i 	C/ x=-i D/ Tất cả đều đúng.
 BT3:Nghiệm của pt x4 + 4 = 0 trong tập hợp số phức là :
 A/ ±(1-i) B/ ±(1+i) C/ ±2i D/ A,B đều đúng 
Tiết :	Ngày soạn :	ngày dạy
BÀI TẬP PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC
I.Tiến trình bài học:
1.ổn định lớp: (1’) 
2.Kiểm tra bài cũ: (6’)
Câu hỏi 1: Căn bậc 2 của số thực a<0 là gì?
Áp dụng : Tìm căn bậc 2 của -8
Câu hỏi 2: Công thức nghiệm của pt bậc 2 trong tập số phức 
Áp dụng : Giải pt bậc 2 : x² -x+5=0
3.Nội dung:
HĐGV
HĐHS
Nội dung
- Gọi 1 số học sinh đứng tại chỗ trả lời bài tập 1
- Gọi 3 học sinh lên bảng giải 3 câu a,b,c
Þ GV nhận xét, bổ sung (nếu cần).
- Gọi 2 học sinh lên bảng giải 
 Þ Cho HS theo dõi nhận xét và bổ sung bài giải (nếu cần). 
- Giáo viên yêu cầu học sinh nhăc lại cách tính 
z1+ z2, z1.z2 
trong trường hợp Δ > 0
- Yêu cầu học sinh nhắc lại nghiệm của pt trong trường hợp Δ < 0. ÞSau đó tính tổng z1+z2 tích z1.z2
- Yêu cầu học sinh tính z+z‾
	z.z‾
→z,z‾ là nghiệm của pt 
 X² -(z+z‾)X+z.z‾ = 0
→Tìm pt
Trả lời được :
± I ; ± 2i ; ±2i ; ±2i ; ±11i.
a/ -3z² + 2z – 1 = 0
Δ΄= -2 < 0 pt có 2 nghiệm phân biệt.
 z1,2 = 
b/ 7z² + 3z + 2 = 0
Δ= - 47 < 0 pt có 2 nghiệm phân biệt. 
 z1,2 = 
c/ 5z² - 7z + 11 = 0
Δ = -171 < 0 pt có 2 nghiệm phân biệt
z1,2 = 
 3a/ z4 + z² - 6 = 0
 z² = -3 → z = ±i
 z² = 2	 → z = ± 
3b/ z4 + 7z2 + 10 = 0
z2 = -5 → z = ±i
z² = - 2	 → z = ± i
Tính nghiệm trong trường hợp Δ < 0
Tìm được z1+z2 = 
 z1.z2 = 
z+z‾ = a+bi+a-bi=2a
z.z‾= (a+bi)(a-bi)
 = a² - b²i² = a² + b²
→z,z‾ là nghiệm của pt 
X²-2aX+a²+b²=0
Bài tập 1
Bài tập 2
Bài tập 3
BT4:
z1+z2 = 
 z1.z2 = 
BT5:
Pt:X²-2aX+a²+b²=0
4). Củng cố toàn bài (4’)
 - Nắm vững căn bậc 2 của số âm ; giải pt bậc 2 trong tập hợp số phức
 - Bài tập củng cố:
BT 1: Giải pt sau trên tập số phức:
 a/ z2 – z + 5 = 0
 b/ z4 – 1 = 0
 c/ z4 – z2 – 6 = 0
----------------------------------------------------------------------------------------------------------------------------
Tiết : 	Ngày soạn :	ngày dạy
ÔN TẬP CHƯƠNG IV
I/ Yêu cầu:
1/ Kiến thức: - Nắm được định nghĩa số phức, phần thực, phần ảo, môđun của số phức. Số phức liên hợp.
- Nắm vững được các phép toán: Cộng , trừ, nhân, chia số phức – Tính chất của phép cộng, nhân số phức.
- Nắm vững cách khai căn bậc hai của số thực âm. Giải phương trình bậc hai với hệ số thực.
2/ Kỹ năng: - Tính toán thành thạo các phép toán.
- Biểu diễn được số phức lên mặt phẳng tọa độ .
- Giải phương trình bậc I, II với hệ số thực.
3/ Tư duy, thái độ: - Rèn luyện tính tích cực trong học tập , tính toán cẩn thận , chính xác.
II/ Chuẩn bị: 
1/ Giáo viên: Bài soạn- Phiếu học tập.
2/ Học sinh: Bài cũ: ĐN, các phép toán, giải phương trình bậc hai với hệ số thực.
III/ Phương pháp giảng dạy:
 Nêu vấn đề - Gợi ý giải quyết vấn đề.
IV/ Tiến trình dạy học:
1/ Ổn định: (1’ ).
2/ Kiểm Tra: (9’ ) - Chuẩn bị bài cũ của học sinh.
- Biểu diễn số phức Z1= 2 + 3i và Z2 = 3 + i lên mặt phẳng tọa độ. Xác định véc tơ biểu diễn số phức Z1 + Z2 
* Phân tiết: Tiết 1: Từ HĐ1 -> HĐ3.
Tiết 2: Từ HĐ4 -> Cũng cố.
3/ Bài mới
HĐGV
HĐHS
Nội dung
Hoạt động 1: Định nghĩa số phức -Số phức liên hợp
Ø Nêu đ. nghĩa số phức ?
ØBiểu diễn số phức 
Z= a + bi lên mặt phẳng tọa độ ?
ØViết công thức tính môđun của số phức Z ?
ØNêu d. nghĩa số phức liên hợp của số phức Z= a + bi ?
Ø Số phức nào bằng số phức liên hợp của nó ?
Ø Giảng: Mỗi số phức đều có dạng Z= a + bi , a và b R. Khi biểu diễn Z lên mặt phẳng tọa độ ta được véc tơ = (a, b). Có số phức liên hợp = a + bi.
ØDạng Z= a + bi , trong đó a là phần thực, b là phần ảo.
Ø Vẽ hình
Ø
ØSố phức có phần ảo bằng 0.
Ø Theo dõi và tiếp thu
I/ ĐN số phức- Số phức liên hợp: 
- Số phức Z = a + bi với a, b R
* .
* Số phức liên hợp:
= a – bi
Chú ý: Z = 
Hoạt động 2: Biểu diễn hình học của số phức Z = a + bi.
Ø Giảng: Mỗi số phức Z = a + bi biểu diễn bởi một điểm M (a, b) trên mặt phảng tọa độ.
ØNêu bài toán 6/ 145 (Sgk) . Yêu cầu lên bảng xác định ? 
ØTheo dõi 
Ø Vẽ hình và trả lời từng câu a, b, c, d
II/ Tập hợp các điểm biểu diễn số phức Z:
1/ Số phức Z có phần thực a = 1: Là đường thẳng qua hoành độ 1 và song song với Oy.
2/ Số phức Z có phần ảo b = -2: Là đường thẳng qua tung độ -2 và song song với Ox.
3/ Số phức Z có phần thực a ,phần ảo b : Là hình chữ nhật.
3/ : Là hình tròn có R = 2.
Hoạt động 3: các phép toán của số phức
ØYêu cầu HS nêu qui tắc: Cộng , trừ, nhân , chia số phức?
Ø Phép cộng, nhân số phức có tính chất nào ?
Ø Yêu cầu HS giải bài tập 6b, 8b .
*Gợi ý: Z = a + bi =0 ó 
ØTrả lời
Ø- Cộng: Giao hoán, kết hợp 
- Nhân: Giao hoán, kết hợp, phân phối.
Ø Lên bảng thực hiện
III/ Các phép toán :
Cho hai số phức:
Z1 = a1 + b1i
Z2 = a2 + b2i
*Cộng: 
Z1+Z2= a1+ a2+(b1+b2)i
* Trừ:
Z1-Z2= a1- a2+(b1-b2)i
* Nhân:
Z1Z2= a1a2- b1b2 +
(a1b2+a2b1)i
* Chia :
6b)Tìm x, y thỏa :
2x + y – 1 = (x+2y – 5)i
8b) Tính : (4-3i)+
= 4- 3i +
= 4 – 3i + 
Hoạt động 4: Căn bậc hai với số thực âm – Phương trình bậc hai với hệ số thực
ØNêu cách giải phương trình bậc hai : ax2 + bx + c = 0 ; a, b, c R và a 0 ?
Ø Yêu cầu HS giải bài tập 10a,b 
ØNêu các bước giải – ghi bảng
Ø Thực hiện
IV/ Phương trình bậc hai với hệ số thực:
ax2 + bx + c = 0 ; a, b, c R và a 0.
* Lập = b2 – 4ac
Nếu : 
10a) 3Z2 +7Z+8 = 0
Lập = b2 – 4ac = - 47
Z1,2 = .
10b) Z4 - 8 = 0.
 ó 
ó 
4/Cũng cố: - Nhắc lại hệ thống các kiến thức cơ bản : ĐN số phức, số phức liên hợp- Giải phương trình bậc hai với hệ số thực.
- HS thực hiện trên 3 phiếu học tập.
5/ Dặn dò: - Nắm vững lý thuyết chương 4.
- Giải các bài tập còn lại của chương - Xem lại bài tập đã giải.
-Chuẩn bị tiết sau kiểm tra 1 tiết của chương 4
V/ Phụ lục: 
Phiếu học tập số 1: 
Câu 1: Số phức Z = a + bi thỏa điều kiện nào để có điểm biểu diễn M ở phần gạch chéo trong hình a, b, c.
2) Phiếu học tập số 2:
Câu 2: Giải phương trình : Z4 – Z2 – 5 = 0.
3) Phiếu học tập số 3: 
Câu 3: Tìm hai số phức Z1, Z2 thỏa : Z1 + Z2 = 1 và Z1Z2 = 7 
----------------------------------------------------------------------------------------------------------------------------
Tiết : 	Ngày soạn :	ngày dạy
KIỂM TRA 1 TIẾT CHƯƠNG IV
 A/ PHẦN TRẮC NGHIỆM (4đ)
 Câu 1: Phần ảo của z =3i là
 a/ o b/ 3i c/ i d/ 3
 Câu 2: bằng:
 a/ 5 b/ -3 c/ d/
 Câu 3: Tìm các số thực x và y biết:
 	 (3x-2) + (2y + 1)i =(x+1) -(y-5)i
 	 a/x =3, y =4 c/x = , y = 
 	 b/ x = , y =2 d/ x = ,y = 
 	Câu 4: Số z + là:
 	 a/ Số thực b/ số ảo c/ o d/ 2
 	Câu 5: Đẳng thức nào sau đây đúng:
 	a/i2006 = -i b/i2007 = 1 c/ i2008 = i d/i2345 = i
 	 Câu 6: Căn bậc hai của -36 là :
 a/ 6 b/ c/ - 36i 	d/ o
 Thực hiện bài 7,8,9,10 với đề toán sau:
 Cho z =3 + 2i; z1 =2-3i
 Câu 7: z z1 bằng:
 	 a/ 12 - 5i b/ 6 - 6i c/ 13i d/ 12 + 13i
 	Câu 8: z/z1 bằng:
 	 a/ 13i b/ 6 + I c/ i d/ 6 +13i
 	Câu 9: z + z1 bằng :
 	 a/ 6 - 5i b/ 5 + 5i c/ 6 - 6i d/ 5 - i
 	 Câu 10 : z + bằng:
 	 a/ 6 - 4i b/ 4i c/ 6 d/ 4
B/ PHẦN TỰ LUẬN:
Thực hiện phép tính: 
 ( 1- 2 i ) + 
Giải phương trình : z2 - 2z + 9 =0
Tìm số phức z, biết = 3 và phần ảo của z bằng 3 lần phần thực của nó.
KIỂM TRA 1 TIẾT CHƯƠNG IV
Mục đích yêu cầu :
 Học sinh nắm được :
Cách xác định căn bậc hai của số thực âm.
Giải phương trình bậc hai với hệ số thực có biệt số âm.
Các phép toán cộng, trừ ,nhân, chia số phức.
II. Mục tiêu :
Đánh giá khả năng tiếp thu bài của học sinh.
Học sinh nắm vững và hệ thống các kiến thức đã học trong chương
 NB
TN TL
 TH
 TN TL
 VD
 TN TL
 TC
số phức
2
 0,8 
2	2
0,8
1,6
cộng, trừ, nhân số phức
1
 0,4
1
2
1
0,4
1
0,4
3,2
phép chia số phức
1
0,4
1
0,4
0,8
phương trinh bậc hai với hệ số thực
1
0,4
2
2
1
2
4,4
tổng cộng
 2 2
 16 2	 
 0,4 2 
10
ĐÁP ÁN :
A/ PHẦN TRẮC NGHIỆM :
Câu
1
2
3
4
5
6
7
8
9
10
Đáp án
d
d
c
a
d
b
a
c
d
c
B/ PHẦN TỰ LUẬN :
1. - ( 1-2i) + = (1-2i) + (+i) ( 1đ)
 - Tính đúng kết quả ( 1đ)
2. - Tính đúng = -8 ( 0,5 đ)
 - Tính đúng ( 0,5 đ)
 - Tìm đúng 2 nghiệm ( 1 đ )
3. z = a + 3ai ( 0,5 đ)
 = = 3 a= ( 0.5 đ)
 - Tìm đúng z và kết luận (1đ)

Tài liệu đính kèm:

  • docGIAOAN 12 (NGUYEN HAM -+ S_A.doc