Giáo án Giải tích 12 nâng cao kỳ II

Giáo án Giải tích 12 nâng cao kỳ II

chương III

 nguyên hàm. tích phân và ứng dụng.

Tiết 51-52. NGUYÊN HÀM

I. Mục đích bài dạy:

 - Kiến thức cơ bản: khái niệm nguyên hàm, các tính chất của nguyên hàm, sự tồn tại của nguyên hàm, bảng nguyên hàm của các hàm số thường gặp,

 - Kỹ năng: biết cách tính nguyên hàm của một số hàm số đơn giản

 - Thái độ: tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv, năng động, sáng tạo trong quá trình tiếp cận tri thức mới, thấy được lợi ích của toán học trong đời sống

 - Tö duy: hình thành tư duy logic, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ.

II : Chuẩn bị

• GV : Bảng phụ , Phiếu học tập

• HS : Kiến thức về đạo hàm

 

doc 81 trang Người đăng ngochoa2017 Lượt xem 998Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án Giải tích 12 nâng cao kỳ II", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Gi¸o ¸n Gi¶i TÝch 12 N©ng cao Kú II
n¨m häc 2010-2011
Ngµy 04 th¸ng 01 n¨nm 2011
ch­¬ng III
 nguyªn hµm. tÝch ph©n vµ øng dông.
TiÕt 51-52. NGUYÊN HÀM
I. Mục ñích baøi dạy:
 - Kiến thức cơ bản: khái niệm nguyên hàm, các tính chất của nguyên hàm, sự tồn tại của nguyên hàm, bảng nguyên hàm của các hàm số thường gặp,
 - Kỹ năng: biết cách tính nguyên hàm của một số hàm số đơn giản 
 - Thaùi ñoä: tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của Gv, năng động, sáng tạo trong quá trình tiếp cận tri thức mới, thấy được lợi ích của toán học trong đời sống
 - Tö duy: hình thành tư duy logic, lập luận chặt chẽ, và linh hoạt trong quá trình suy nghĩ.
II : Chuẩn bị 
GV : Bảng phụ , Phiếu học tập 
HS : Kiến thức về đạo hàm 
II. Phương phaùp: 
 - Thuyết giảng , kết hợp thảo luận nhoùm vaø hỏi ñaùp. 
III. Nội dung vaø tiến trình leân lớp:
1/ KiÓm tra bµi cò : (10 phút) 
Câu hỏi 1 : Hoàn thành bảng sau : 
(GV treo bảng phụ lên yêu cầu HS hoàn thành , GV nhắc nhở và chỉnh sửa )
f(x)
f/(x) 
C
x
lnx
ekx
ax (a > 0, a ¹ 1)
cos kx
 sin kx
tanx
cotx
Câu hỏi 2 : Nêu ý nghĩa cơ học của đạo hàm 
2/ Néi dung bµi míi
TG
Hoạt động của GV
Hoạt động của HS
Néi dung ghi b¶n
10/
10/
5/
10/
T 2 
10/
10/
10/
12/
H§1: Giíi thiÖu k/n Nguyªn hµm
Bài toán mở đầu (sgk)
Hỏi : 1) Nếu gọi s(t) là quãng đường đi được của viên đạn bắn được t giây , v(t) là vận tốc của viên đạn tại thời điểm t thì quan hệ giữa hai đại lượng đó như thế nào ?
 2) Theo bài toán ta cần phải tìm gì? 
* Cho HS đọc chú ý (sgk Tr 136)
VD T×m Nguyªn hµm cña
a/ f(x) = x2.
b/ g(x) =.với x Î 
c) h(x) = trên 
*Gọi HS đứng tại chỗ trả lời ,GV chỉnh sửa và ghi lên bảng 
Củng cố : Cho HS thực hiện HĐ 2: (SGK)
Gọi HS đứng tại chỗ trả lời 
* GV nhận xét và chỉnh sủa 
Hỏi : Neáu bieát F(x) laø moät nguyeân haøm cuûa f(x) thì ta coøn chæ ra ñöôïc bao nhieâu nguyeân haøm cuûa f(x).
Từ đó ta có định lý 1 
HĐ 3: Định lý 1 
* Ghi định lý 1 lên bảng 
Hỏi 1 : Em hãy dựa vào tính chất F’(x) = f (x) ở hoạt động trên để chứng minh phần a của định lý vừa nêu.
Hỏi 2 : Nếu f/(x) = 0 , có nhận xét gì về hàm số f(x) 
Xét = G/(x) – F/(x) = f(x) – f(x) = 0 , vậy G(x) – F(x) =C (C là hằng số ) 
 Gv giới thiệu với Hs phần chứng minh SGK, trang 137, để Hs hiểu rõ nội dung định lý vừa nêu.
Cho HS làm ví dụ 2 ( Trang 138, sgk) 
* GV nhận xét và chỉnh sửa 
GV ghi bảng phần nhận xét (sgk) 
 . .
.
* Giới thiệu cho HS : Sự tồn tại của nguyên hàm:
 Ta thừa nhận định lý sau:
(Gv ghi bảng )
 Hoạt động 4 :
 Hãy hoàn thành bảng sau: 
(Phiếu học tập 1)
* Hoạtđộng nhóm 
* Gọi đại diện nhóm lên bảng trình bày , gọi đại diện nhóm khác nhận xét , GV chỉnh sửa 
Từ đó có bảng nguyên hàm 
Gọi HS lên bảng trình bày , GV nhận xét và chỉnh sửa 
Hoạt động 5 : Tính chất của nguyên hàm 
* Ghi tính chất của nguyên hàm lên bảng 
Gv giới thiệu với Hs phần chứng minh SGK, trang 140, để Hs hiểu rõ nội dung tính chất 2 vừa nêu
Củng cố Cho VD vÒ Nguyªn hµm
* Gọi HS lên bảng trình bay , GV hướng dẫn , chỉnh sửa 
* Hướng dẫn HS làm bài 
Tìm : dx 
HĐ 6 ) : Củng cố bài học 
Phát phiếu học tập 
Treo bảng phụ ghi nội dung phiếu học tập 
Đại diện nhóm lên bảng trình bày , Gv nhận xét , chỉnh sửa 
* HS đọc sgk
Trò trả lời 
v(t) = s/(t) 
Tính s(t) biết s/(t) 
Trò trả lời 
a/ F(x) = 
b/G(x) = tanx 
 c)H(x) = 
Thực hiện HĐ1
F1(x) = - 2cos2x là nguyên hàm của hàm số f(x) = 4sin2x
F2(x) = - 2cos2x + 2 là nguyên hàm của hàm số f(x) = 4sin2x
HS trả lời Vä säú, âoï laì : F(x) +C, C laì hàòng säú
Đứng tại chỗ trả lời 
.
f(x) là hàm hằng 
HS lên bảng trình bày 
Thảo luận nhóm để hoàn thành bảng nguyên hàm đã cho và làm các ví dụ sau
HS trình bày 
dx 	= 
= (= + C
= + C
Thảo luận nhóm 
Khái niệm nguyên ham
Bài toán mở đầu (sgk)
a/§N :
 * Hµm sè F(x) ®gl Nguyªn hµm cña hµm f(x): x K ta cã F’(x) = f(x)
Chú ý (SGK) 
VD: 
a. F(x) = lµ mét nguyªn hµm cña hµm sè f(x) = x2 trãn R
b. G(x) = tgx lµ mét nguyªn hµm cña hµm sè 
g(x) =Trªn 
c) H(x) = lµ mét nguyªn hµm cña hµm sè h(x) = trên 
b/ § lý 1(SGK)
Gi¸o viªn gíi thiÖu vµ CM
Chứng minh: (sgk)
VD:Tìm nguyên hàm của hàm số trên R thoả mãn điều kiện
 F(1) = - 1
F(x) = 
F(1) = - 1 nên C = - 2
Vậy F(x) = x2 – 2 
Tóm lại, ta có: Nếu F là một nguyên hàm của f trên K thì mọi nguyên hàm của f trên K đều có dạng F(x) + C , C R
Vây F(x) + C là họ tất cả các nguyên hàm của f trên K , kí hiệu f(x)dx.
 Với f(x)dx là vi phân của nguyên hàm F(x) của f(x), vì dF(x) = F’(x)dx = f(x)dx. 
“Mọi hàm số liên tục trên K đều có nguyên hàm trên K”
2) Bảng các nguyên hàm của một số hàm số thường gặp
* Treo bảng các nguyên hàm cơ bản (trang 139) 
Ví dụ : T×m c¸c Nguyªn hµm sau ®©y
1) 4x4dx = x5 + C
2) dx = + C
3) cosx/2 dx =2sin + C
3. C¸c tÝnh chÊt cña nguyªn hµm 
 Nếu f và g là hai hàm số liên tục trên K thì : 
a) 
b) Với mọi số thực k 0 ta có 
Ví dụ : 
 1) ()dx = = 
 + C
2) (x – 1) (x4 + 3x ) dx= 
3) 4sin2xdx = 
= 2x – sin2x + C
*. dx == (
=+ C=+ C
Nội dung phiếu học tập 
IV. Củng cố ( L2/)
	+ Gv nhắc lại các khái niệm và quy tắc trong bài để Hs khắc sâu kiến thức.
	+ Dặn BTVN: Hoàn thành các bài tập 1..4 SGK, trang 141 
	+ Xem trước bài : Một số phương pháp tìm nguyên hàm 
Ngµy 04 th¸ng 01 n¨m 2011
TiÕt 53-54
CÁC PHƯƠNG PHÁP TÌM NGUYÊN HÀM
Mục tiêu
 1.Về kiến thức:
 - Hiểu được phương pháp đổi biến số và lấy nguyên hàm từng phần . 
	2. Về kĩ năng:
 - Giúp học sinh vận dụng được 2 phương pháp tìm nguyên hàm của một số hàm số không quá phức tạp.
 3. Về tư duy thái độ:
 - Phát triển tư duy linh hoạt.
-Học sinh tích cực tham gia vào bài học, có thái độ hợp tác.
Chuẩn bị của giáo viên và học sinh
1. Giáo viên: 
Lập các phiếu học tập, bảng phụ.
 2. Học sinh:
 Các kiến thức về : 
 - Vận dụng bảng các nguyên hàm, tính chất cơ bản của nguyên hàm, vi phân.
 III. Phương pháp: Gợi mở vấn đáp 
Tiến trình bài học 
	Kiểm tra bài cũ: (5 phút)
 Câu hỏi: a/ Phát biểu định nghĩa nguyên hàm .
 b/ Chứng minh rằng hàm số F(x) = là một nguyên hàm của hàm số 
 f(x) = 4x(2x2 +1)4.
Cho học sinh khác nhận xét bài làm của bạn.
Nhận xét, kết luận và cho điểm.
	Hoạt động 1: Xây dựng phương pháp đổi biến số. 
Tg
Hoạt động của học sinh
Hoạt động của giáo viên
Ghi bảng
5’
5’
- Nếu đặt u = 2x2 + 1, thì =
== + C = + C
- Thông qua câu hỏi b/ , hướng dẫn hsinh đi đến phương pháp đổi biến số.
=
=
-Nếu đặt u = 2x2 + 1, thì biểu thức ở trên trở thành như thế nào, kết quả ra sao? 
- Phát biểu định lí 1.
-Định lí 1 : (sgk)
 Hoạt động 2 :Rèn luyện kỹ năng tìm nguyên hàm bằng PPĐBS.
Tg
Hoạt động của học sinh
Hoạt động của giáo viên
Ghi bảng
7’
7’
6’
- HS suy nghĩ cách biến đổi về dạng
- Đ1: =
Đặt u = x2+1 , khi đó :
=
= u+ C = (x2+1)+ C
- HS suy nghĩ cách biến đổi về dạng
Đ2:=
Đặt u = (x2+1) , khi đó :
=
= -cos u + C = - cos(x2+1) +C 
-HS suy nghĩ cách biến đổi về dạng
Đ3:=
 = - 
Đặt u = cos x , khi đó :
= -
= -= -eu +C = - ecosx +C
H1:Có thể biến đổi về dạng được không? Từ đó suy ra kquả?
- Nhận xét và kết luận.
H2:Hãy biến đổi về dạng ? Từ đó suy ra kquả?
- Nhận xét và kết luận.
H3:Hãy biến đổi về dạng ? Từ đó suy ra kquả?
- Nhận xét và kết luận.
Vd1: Tìm 
Bg:
=
Đặt u = x2+1 , khi đó :
=
= u+ C = (x2+1)+ C
Vd2:Tìm
Bg:
=
Đặt u = (x2+1) , khi đó :
=
= -cos u + C = - cos(x2+1) +C
Vd3:Tìm 
Bg:
= -
Đặt u = cos x , khi đó :
= -
= -= -eu + c = - ecosx + c
* chú ý: có thể trình bày cách khác:
= -
= - ecosx + C
 Hoạt động 3: Củng cố ( 10 phút) . Hoạt động nhóm.
Tg
Hoạt động của học sinh
Hoạt động của giáo viên
Ghi bảng
10’
- Các nhóm tập trung giải quyết .
- Theo dõi phần trình bày của nhóm bạn và rút ra nhận xét và bổ sung.
- Cho HS hđ nhóm thực hiện phiếu HT1 .
- Gọi đại diện một nhóm trình bày.
- Đại diện nhóm khác cho nhận xét.
- GV nhận xét và kết luận.
* Chú ý: Đổi biến số như thế nào đó để đưa bài toán có dạng ở bảng nguyên hàm.
Bài tập về nhà: 6, 7 trang 145
TIẾT 54
Hoạt động 4:Giới thiệu phương pháp lấy nguyên hàm từng phần .
Tg
Hoạt động của học sinh
Hoạt động của giáo viên
Ghi bảng
5’
8’
Đ: 
(u.v)’= u’.v + u.v’
= +
 = +
 = uv - 
Đ:Đặt u = x, dv = sinxdx
 Khi đó du = dx, v = -cosx
Ta có : 
 =- x.cosx + = - xcosx + sinx + C
H: Hãy nhắc lại công thức đạo hàm một tích ?
Hãy lấy nguyên hàm hai vế, suy ra = ?
- GV phát biểu định lí 3
- Lưu ý cho HS: đặt u, dv sao cho 
tính dễ hơn .
- H: Từ đlí 3 hãy cho biết đặt u và dv như thế nào? Từ đó dẫn đến kq?
- yêu cầu một HS khác giải bằng cách đặt u = sinx, dv = xdx thử kq như thế nào
-Định lí 3: (sgk)
 = uv - 
-Vd1: Tìm 
Bg:
Đặt u = x,dv = sinxdx Khi đó du =dx,v =-cosx
Ta có : 
 =- x.cosx + = - xcosx + sinx + C
Hoạt động 5: Rèn luyện kỹ năng tìm nguyên hàm bằng pp lấy nguyên hàm từng phần.
Tg
Hoạt động của học sinh
Hoạt động của giáo viên
Ghi bảng
5’
5’
5’
2’
7’
- Học sinh suy nghĩ và tìm ra hướng giải quyết vấn đề.
Đ :Đặt u = x ,dv = exdx
 du = dx, v = ex
 Suy ra :
= x. ex - 
 = x.ex – ex + C
Đ: Đặt u = x2, dv = exdx
 du = 2xdx, v = ex
Khi đó: 
=x2.ex-
 = x2.ex-x.ex- ex+C
- Đ: Đặt u = lnx, dv= dx
 du = dx, v = x
Khi đó : 
= xlnx - 
 = xlnx – x + C
- Đăt u = lnx, dv = x2dx
 du = dx , v = 
Đ :Không được.
Trước hết : 
Đặt t = dt = dx
Suy ra =2
Đặt u = t, dv = sint dt
du = dt, v = - cost
=-t.cost+ = -t.cost + sint + C
Suy ra:
= 
= -2.cos+2sin+C
H :- Dựa vào định lí 3, hãy đặt u, dv như thế nào ? Suy ra kết quả ?
H : Hãy cho biết đặt u, dv như thế nào ? Suy ra kquả ?
- Lưu ý :Có thể dùng từng phần nhiều lần để tìm nguyên hàm.
- H : Cho biết đặt u và dv như thế nào ?
- Thông qua vd3, GV yêu cầu HS cho biết đối với 
thì ta đặt u, dv như thế nào.
H : Có thể sử dụng ngay pp từng phần được không ? ta phải làm như thế nào ?
+ Gợi ý : dùng pp đổi biến số trước, đặt t = .
* Lưu ý cho HS các dạng thường sử dụng pp từng phần.
, 
đặt u = f(x), dv cònlại.
, đặt u = lnx,dv =f(x) dx
- Vd2 :Tìm 
Bg :
Đặt u = x ,dv = exdx
 du = dx, v = ex
 Suy ra :
= x. ex - 
 = x.ex – ex + C
Vd3 : Tìm I=
Bg :Đặt u = x2, dv = exdx
 du = 2xdx, v = ex
Khi đó: 
=x2.ex-
 = x2.ex-x.ex- ex+C
Vd4 :Tìm 
Bg :
Đặt u = lnx, dv= dx
 du = dx, v = x
Khi đó : 
= xlnx - 
 = xlnx – x + C
Vd5: Tìm 
Đặt t = dt = dx
Suy ra =2
Đặt u = t, dv = sint dt
du = dt, v = - cost
=-t.cost+ = -t.cost + sint + C
Suy ra:
= 
= -2.cos+2sin+C
Hoạt động 6 : Củng cố
..
Ngµy 04 th¸ng 01 n¨m 2011
TiÕt 55
CÁC PHƯƠNG PHÁP TÌM NGUYÊN HÀM
Mục tiêu
 1.Về kiến thức:
 - Học sinh nắm vững hai pp tìm nguyên hàm . 
	2. Về kĩ năng:
 - Giúp học sinh vận dụng được 2 phương pháp tìm nguyên hàm của một số hàm số.
 3. Về tư duy thái độ:
 - Phát triển tư duy linh hoạt.
-Học sinh tích cực tham gia vào bài học, có thái độ hợp tác.
Chuẩn bị của giáo viên và học sinh
1. Giáo viên :
 - Bài tập sgk
- Lập các phiếu học tập.
 2. Học sinh:
 Biết phân biệt dạng toán dung pp đổi biến số, từng phần
 III. Phương pháp: 
 IV.Tiến trình bài học 
	Kiểm tra bài cũ: (10 phút)
 Câu hỏi 1: Hãy phát biểu phương pháp đổi biến số để tìm nguyên hàm?
 Áp dụng: Tìm cosdx
 Câu hỏi 2:Hãy phát biểu phương pháp lấy nguyên  ... ng giác
 Thực hiện phép tính nhân chia số phức dưới dạng lượng giác.
 + Về tư duy và thái độ. 
 Có thái độ hợp tác 
 Tích cực hoạt động
 Biết qui lạ về quen, biết tổng hợp kiến thức,vận dụng linh hoạt vào việc giải bài tập. 
II/ Chuẩn bị của giáo viên và học sinh
 + Giáo viên : Giáo án, phiếu học tập.
 + Học sinh: Học bài và làm bài tập ở nhà 
III/ Phương pháp : Gợi mở, chất vấn,hoạt động nhóm
IV/ Tiến trình bài dạy 
 1/ Ổn định tổ chức: Ổn định lớp, điểm danh 
 2/ Kiểm tra bài cũ: ( Kết hợp trong các hoạt động)
 3/ Bài tập:
 Hoạt động 1 Củng cố và rèn luyện kỹ năng viết dạng lượng giác của số phức
TG 
 Hoạt động của giáo viên
 Hoạt động của học sinh
 Ghi bảng 
10'
+CH1(Nêu cho cả lớp)
Để tìm dạng lượng giác r(cos + isin) của số phức a + bi khác 0 cho trước ta cần tính các yếu tố nào?
Chỉ định 1 HS trả lời
GV: chính xác hóa vấn đề
+ Chỉ định 1 học sinh lên bảng giải 36a
Gọi một học sinh nhận xét bài làm của bạn
 GV: chính xác hóa,chỉnh sửa (nếu có),cho điểm.
Trả lời:
r = 
: trong đó 
cos= ,sin= 
1 HS lên bảng giải
Các học sinh còn lại giải vào giấy nháp
Hs nhận xét
Ghi nhận vấn đề
Đề BT 36a Sgk
Bài giải của học sinh
 (đã chỉnh sửa)
ĐS: z = 
Hướng dẫn giải BT 36b
Tiếp thu, về nhà giải 
+ Chỉ định 1 học sinh lên bảng giải 36c
Gọi một học sinh nhận xét bài làm của bạn
 GV: chính xác hóa,chỉnh sửa (nếu có), cho điểm 
HĐ thêm: Có thể dùng công thức chia 2 số phức dạng lượng giác để giải
Khắc sâu: r > 0 suy ra các trường hợp
1 HS lên bảng giải
Các học sinh còn lại giải vào giấy nháp
Hs nhận xét
Ghi nhận vấn đề
Đề BT 36c Sgk
Bài giải của học sinh
 (đã chỉnh sửa)
ĐS: 
Nếu sin>0 thì z = 
2sin
Nếu sin<0 thì z = 
-2sin
Nếu sin=0 thì 
 z = 0(cos+ isin) (R)
HĐ2: Bt Áp đụng công thức Moa-vrơ 
TG
Họat động của giáo viên
Họat động của học sinh
Ghi bảng
5'
+CH2(Nêu cho cả lớp)
Nêu công thức Moa-vrơ Chỉ định 1 HS trả lời
GV: chính xác hóa vấn đề
+ Chỉ định 1 học sinh lên bảng giải 32
Gọi một học sinh nhận xét bài làm của bạn
 GV: chính xác hóa,chỉnh sửa (nếu có), cho điểm. 
Hs trả lời
1 HS lên bảng giải
Các học sinh còn lại giải vào giấy nháp
Hs nhận xét
Ghi nhận vấn đề
Ghi công thức Moa-vrơ
Đề BT 32 Sgk
Bài giải của học sinh
 (đã chỉnh sửa)
ĐS: 
cos4=
cos4+sin4- 6cos2sin2 
sin4=
4cos3sin- 4sin3cos 
 HĐ3: Bt kết hợp dạng lượng giác của số phức và áp dụng công thức Moa-vrơ 
Tg
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
7'
+ Chỉ định 1 học sinh lên bảng giải 33a và 33c
Chia bảng làm 2 cột
Gợi ý: Viết dạng lượng giác của số phức z rồi áp dụng công thức Moa-vrơ để tính zn.
Gọi một học sinh nhận xét bài làm của bạn
 GV: chính xác hóa,chỉnh sửa (nếu có), cho điểm. 
1 HS lên bảng giải
Các học sinh còn lại giải vào giấy nháp
Hs nhận xét
Ghi nhận vấn đề
Đề BT 33a và 33c Sgk
Bài giải của học sinh
 (đã chỉnh sửa)
ĐS: 
a/ (
c/ 
 HĐ4: Hướng dẫn giải Bt 34
Tg
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
5’
Hướng dẫn:
Viết dạng l.giác của 
Dùng công thức Moa-vrơ để n.
+CH3(Nêu cho cả lớp)
n là số thực khi nào?
n là số ảo khi nào?
Giáo viên dẫn dắt đi đến kết quả
Nghe hiểu ,tiếp thu
Trả lời:
 sin=0,
 cos=0
Ghi nhận
ĐS: 
 = cosisin
n = cosisin
a/ n là số thực khi n là bội nguyên dương của 3
b/ Không tồn tại n để n là số ảo
 HĐ5: Hướng dẫn giải Bt 35 – Nhân, chia số phức dạng lượng giác
Tg
Hoạt động của giáo viên
Hoạt động của HS
Ghi bảng
5’
+CH3(Nêu cho cả lớp)
1)Công thức nhân, chia số phức dạng lượng giác?
2)Cách tính acgumen và môđun của tích hoặc thương 2 số phức?
3) Dạng lượng giác của căn bậc 2 của số phức z?
 4) Acgumen của i? suy ra của z = ?
Gợi ý dẫn dắt để các em có được kiến thức chính xác. 
Trả lời:
 suy ra 
Đề BT 35a Sgk
Đáp số 
a) Acgumen của z = là
z = 3 
Dạng lượng giác của căn bậc 2 của số phức z là:
()
Hướng dẫn: Gọi acgumen của z là ,tính acgumen của theo rồi suy ra .
Nghe hiểu, ghi nhận
Đề BT 35b Sgk
Gọi là 1 acgumen của z là 
suy ra 1 acgumen của là - 
suy ra có 1 acgumen là --
Từ giả thiết suy ra
- - = - +k.2(kZ)
 Suy ra = +l.2(lZ)
chọn = 
Đáp số z = 
Dạng lượng giác của căn bậc 2 của số phức z là:
 HĐ6: Hoạt động nhóm củng cố kiến thức
Tg
Hoạt động của giáo viên
Hoạt động của HS
Ghi bảng
10’
Phát phiếu học tập cho học sinh(6 nhóm)
Gọi đại diện 2 nhóm 1,2 trình bày bài giải vào 2 cột bảng( mỗi nhóm trình bày 1 bài)
Gọi HS nhóm khác nhận xét
Giáo viên chỉnh sửa(nếu cần)
Thảo luận làm bài
Thực hiện yêu cầu
Tham gia nhận xét
Ghi nhận 
Bài giải HS(đã chỉnh sửa)
1/ z= Suy ra z12 = ()12(- 1 + 0)
 = -26 
2/ Gọi là 1 acgumen của z là 
suy ra 1 acgumen của là - 
(1 acgumen của 2 + 2i là )
 suy ra có 1 acgumen là - 
Từ giả thiết suy ra
- = - +k.2(kZ)
 Suy ra = +l.2(lZ)
chọn = 
Đáp số z = 2 
Dạng lượng giác của căn bậc 2 của số phức z là:
và 
Ngµy 05 th¸ng 01 n¨m 2011
TiÕt 82
ÔN TẬP CHƯƠNG IV
I/ Yêu cầu:
1/ Kiến thức: - Nắm được định nghĩa và biểu diễn hình học số phức, phần thực, phần ảo, môđun của số phức, số phức liên hợp.
- Nắm vững được các phép toán: Cộng , trừ, nhân, chia số phức dạng đại số và dạng lượng giác, Acgumen của số phức – Tính chất của phép cộng, nhân số phức.
- Nắm vững cách khai căn bậc hai của số phức, giải phương trình bậc hai với số phức.
2/ Kỹ năng: - Tính toán thành thạo các phép toán.
- Biểu diễn được số phức lên mặt phẳng tọa độ .
- Giải phương trình bậc II với số phức.
- Tìm acgumen của số phức, viết số phức dưới dạng lượng giác, thực hiện phép tính nhân, chia số phức dưới dạng lượng giác.
3/ Tư duy, thái độ: - Rèn luyện tính tích cực trong học tập, có thái độ hợp tác, tính toán cẩn thận, chính xác.	 - Biết qui lạ về quen, biết tổng hợp kiến thức, vận dụng linh hoạt vào việc giải bài tập. 
II/ Chuẩn bị: 
1/ Giáo viên: Bài soạn - Phiếu học tập.
2/ Học sinh: Ôn tập lí thuyết và làm bài tập ôn chương.
III/ Phương pháp giảng dạy: Nêu vấn đề - Gợi ý giải quyết vấn đề.
IV/ Tiến trình dạy học:
1/ Ổn định: (1’ ).
2/ Kiểm Tra: Kết hợp giải bài tập.
3/ Ôn tập :
TG
Hoạt động của Giáo viên
Hoạt động của học sinh
Ghi bảng
Hoạt động 1: Định nghĩa số phức – Các phép toán về số phức
10’
Ø Nêu đ. nghĩa số phức ?
ØYêu cầu HS nêu qui tắc: Cộng , trừ, nhân , chia số phức?
ØVận dụng vào BT 37/208 sgk. Ø
ØDạng Z= a + bi , trong đó a là phần thực, b là phần ảo.
Ø Trả lời
ØLên bảng trình bày lời giải
Ø
Lời giải của học sinh đã chỉnh sửa.
Hoạt động 2: Biểu diễn hình học của số phức Z = a + bi.
10’
Ø Giảng: Mỗi số phức Z = a + bi biểu diễn bởi một điểm M (a, b) trên mặt phảng tọa độ.
ØNêu bài toán 6/ 145 (Sgk) . Yêu cầu lên bảng xác định ? 
ØTheo dõi 
Ø Vẽ hình và trả lời từng câu a, b, c, d
II/ Tập hợp các điểm biểu diễn số phức Z:
1/ Số phức Z có phần thực a = 1: Là đường thẳng qua hoành độ 1 và song song với Oy.
2/ Số phức Z có phần ảo b = -2: Là đường thẳng qua tung độ -2 và song song với Ox.
3/ Số phức Z có phần thực a ,phần ảo b : Là hình chữ nhật.
3/ : Là hình tròn có R = 2.
Hoạt động 3: các phép toán của số phức.
15’
Ø Phép cộng, nhân số phức có tính chất nào ?
Ø Yêu cầu HS giải bài tập 6b, 8b .
*Gợi ý: Z = a + bi =0 ó 
ØTrả lời
Ø- Cộng: Giao hoán, kết hợp 
- Nhân: Giao hoán, kết hợp, phân phối.
Ø Lên bảng thực hiện
III/ Các phép toán :
Cho hai số phức:
Z1 = a1 + b1i
Z2 = a2 + b2i
*Cộng: 
Z1+Z2= a1+ a2+(b1+b2)i
* Trừ:
Z1-Z2= a1- a2+(b1-b2)i
* Nhân:
Z1Z2= a1a2- b1b2 +
(a1b2+a2b1)i
* Chia :
6b)Tìm x, y thỏa :
2x + y – 1 = (x+2y – 5)i
8b) Tính : (4-3i)+
= 4- 3i +
= 4 – 3i + 
Hoạt động 4: Căn bậc hai của số phức – Phương trình bậc hai 
ØNêu cách giải phương trình bậc hai: ax2 + bx + c = 0: a, b, c C và a 0 ?
Ø Yêu cầu HS giải bài tập 10a,b 
ØNêu các bước giải – ghi bảng
Ø Thực hiện
ax2 + bx + c = 0: a, b, c C và a 0.
* Lập = b2 – 4ac
Nếu : 
Trong đó là một căn bậc hai của ∆.
10a) 3Z2 +7Z+8 = 0
Lập = b2 – 4ac = - 47
Z1,2 = .
10b) Z4 - 8 = 0.
 ó 
ó 
4/Củng cố: - Nhắc lại hệ thống các kiến thức cơ bản : ĐN số phức, số phức liên hợp- Giải phương trình bậc hai với hệ số thực.
- HS thực hiện trên 3 phiếu học tập.
5/ Dặn dò: - Nắm vững lý thuyết chương 4.
- Giải các bài tập còn lại của chương - Xem lại bài tập đã giải.
-Chuẩn bị tiết sau kiểm tra 1 tiết của chương 4
V/ Phụ lục: 
Phiếu học tập số 1: 
Câu 1: Số phức Z = a + bi thỏa điều kiện nào để có điểm biểu diễn M ở phần gạch chéo trong hình a, b, c.
2) Phiếu học tập số 2:
Câu 2: Giải phương trình : Z4 – Z2 – 5 = 0.
3) Phiếu học tập số 3: 
Câu 3: Tìm hai số phức Z1, Z2 thỏa : Z1 + Z2 = 1 và Z1Z2 = 7 
Ngµy 05 th¸ng 01 n¨m 2011
ĐỀ KIỂM TRA 1 TIẾT:
MÔN:GIẢI TÍCH 12
Chương IV
Mục đích yêu cầu : Học sinh nắm được :
Các phép toán cộng, trừ ,nhân, chia số phức dạng đại số 
Mô đun của số phức, số phức liên hợp, căn bậc hai của số phức
Dạng lượng giác, argument của số phức, phép nhân, chia dạng lượng giác của số phức
Mục tiêu :
Đánh giá khả năng tiếp thu bài của học sinh.
Học sinh nắm vững và hệ thống các kiến thức đã học trong chương
Ma trận đề:
Mức độ
Nội dung
Nhận biết
Thông hiểu
Vận dụng
Tổng
TN
TL
TN
TL
TN
TL
Số phức và các phép toán về số phức
2
 0,8 
1	
0,4
1
2,0
1
0,4
5
3,6
Căn bậc hai và phương trình bậc hai của số phức
2
0,8
2
2,0
4
2,8
Dạng lượng giác của số phức và ứng dụng
2
0,8
1
0,4
1
0,4
1
2,0
5
3,6
Tổng cộng
4
1,6
4
1,6
3
4,0
2
0,8
1
2,0
14
10
IV. Nội dung đề:
A.Trắc nghiệm:
1.Số z=a+bi là một số thực hoặc là số thuần ảo khi và chỉ khi:
a.z=0 	b.|z| là số thực 	c. a=0 hoặc b=0 	d. b=0
2.Một căn bậc hai của z=5+12i là:
a.3-2i 	b.3+2i 	c.2+3i 	d. 2-3i
3.Số phức nghịch đảo của z=bằng số nào sau đây:
a.1	b.2i	c.-1-i	d.i
4.Số phức 1- i có dạng lượng giác là:
a. 2(cos+isin)	b. -2(cos+isin)	
c. -2(-cos+isin)	d.()	
5. Gọi M là điểm biểu diễn số phức z trên mặt phẳng phức. Khi đó, số -z được biểu diễn bởi điểm nào sau đây?
	a. Đối xứng với M qua O	b. Đối xứng với M qua Oy
	c. Đối xứng với M qua Ox	d. Không xác định được
6. Cho A, B, M lần lượt là ảnh của các số -4, 4i, x+3i. Giá trị xÎR để A, B, M thẳng hàng là:
	a. x=1	b. x=-1	c. x=2	d. x=-2
7. Argument của số phức (1+i)4 là:
	a. 450	b. 900	c. 1800	d. 1350
8. Cho z=. Định số nguyên n nhỏ nhất để zn là số thực?
	a. 1	b. 2	c. 3	d. 4
9. Phương trình (1+2i)x=3x-i cho ta nghiệm:
	a. 	b. 1+3i	c. 	d. 
10. Nếu z=cosa+sina.i thì ta có thể kết luận:
	a. z=1	b. z= -1	c. |z|=1	d. Kết quả khác
B. Tự luận:
Thực hiện phép tính: 
Giải phương trình sau trên C: z2+8z+17=0
Cho phương trình z2+kz+1=0 với kÎ[-2,2]
Chứng minh rằng tập hợp các điểm trong mặt phẳng phức biểu diễn các nghiệm của phương trình trên khi k thay đổi là đường tròn đơn vị tâm O bán kính bằng 1.
Đáp án:
A. Trắc nghiệm:
Câu
1
2
3
4
5
6
7
8
9
10
Đáp án
c
b
d
a
a
b
c
c
a
c
B. Tự luận:
Câu
Nội dung đáp án
Điểm
1
Biến đổi 
1 điểm
1 điểm
2
D’=-1 
Þ
Phương trình có 2 nghiệm 
z1=-4+i
z2=-4-i
0,5 điểm
0,5 điểm
0,5 điểm
0,5 điểm
3
Phương trình có các nghiệm
z1=
z2=
Phần thực: a=
Phần ảo: b= ()
Diểm M(a,b) thỏa a2+b2=
ÞM thuộc đường tròn đơn vị x2+y2=1 tâm O bán kính R=1
0,5 điểm
0,5 điểm
0,5 điểm
0,5 điểm

Tài liệu đính kèm:

  • docGIAO AN GT 12 NC.doc