Giáo án Giải Tich 12 - GV: Huỳnh Việt Tân - Tiết 3: Bài tập sự đồng biến, nghịch biến của hàm số

Giáo án Giải Tich 12 - GV: Huỳnh Việt Tân - Tiết 3: Bài tập sự đồng biến, nghịch biến của hàm số

Tiết 3

BÀI TẬP

SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ

A - Mục tiêu:

1. Về kiến thức

- Củng cố định nghĩa hàm số đồng biến, nghịch biến trên khoảng, nửa khoảng, đoạn.

- Củng cố điều kiện đủ để hàm số đồng biến, nghịch biến trên khoảng, nửa khoảng, đoạn.

2. Về kỹ năng:

 - Có kỹ năng thành thạo giải toán về xét tính đơn điệu của hàm số bằng đạo hàm.

 - Áp dụng được đạo hàm để giải các bài toán đơn giản.

3. Về tư duy và thái độ:

B - Chuẩn bị của thầy và trò:

 Giáo viên: Giáo án, bảng phụ

Học sinh: Sách giáo khoa và bài tập đã được chuẩn bị ở nhà.

C- Phương pháp:

 

doc 2 trang Người đăng ngochoa2017 Lượt xem 853Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án Giải Tich 12 - GV: Huỳnh Việt Tân - Tiết 3: Bài tập sự đồng biến, nghịch biến của hàm số", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 12/8/2009
Tiết 3
BÀI TẬP
SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ
A - Mục tiêu:
1. Về kiến thức 
- Củng cố định nghĩa hàm số đồng biến, nghịch biến trên khoảng, nửa khoảng, đoạn.
- Củng cố điều kiện đủ để hàm số đồng biến, nghịch biến trên khoảng, nửa khoảng, đoạn.
2. Về kỹ năng:
 - Có kỹ năng thành thạo giải toán về xét tính đơn điệu của hàm số bằng đạo hàm.
 - Áp dụng được đạo hàm để giải các bài toán đơn giản. 
3. Về tư duy và thái độ:
B - Chuẩn bị của thầy và trò: 
 Giáo viên: Giáo án, bảng phụ 
Học sinh: Sách giáo khoa và bài tập đã được chuẩn bị ở nhà.
C- Phương pháp: 
D - Tiến trình tổ chức bài học:
Ổn định lớp 
Hoạt động 1: (Kiểm tra bài cũ)
 Câu hỏi:
1. Cho hàm số y = f(x) có đạo hàm trên K, với K là khoảng, nửa khoảng hoặc đoạn. Các em nhắc lại mối liên hệ giữa sự đồng biến, nghịch biến của hàm số trên K và dấu của đạo hàm trên K ?
2. Nêu lại qui tắc xét sự đồng biến, nghịch biến của hàm số
3. (Chữa bài tập 1b trang 9 SGK) :Xét sự đồng biến, nghịch biến của hàm số
	y = 
Tg
Hoạt động của học sinh
Hoạt động của giáo viên
Nội dung
10'
- Học sinh lên bảng trả lời câu 1, 2 đúng và trình bày bài giải đã chuẩn bị ở nhà.
- Nhận xét bài giải của bạn.
- Nêu nội dung kiểm tra bài cũ và gọi học sinh lên bảng trả lời. 
- Gọi một số học sinh nhận xét bài giải của bạn theo định hướng 4 bước đã biết ở tiết 2.
- Uốn nắn sự biểu đạt của học sinh về tính toán, cách trình bày bài giải... 
Hoạt động 2: Chữa bài tập 2a, 2c 
 a) y = c) y = 
Tg
 Hoạt động của học sinh
Hoạt động của giáo viên
Nội dung
15'
- Trình bày bài giải.
- Nhận xét bài giải của bạn.
- Gọi học sinh lên bảng trình bày bài giải đã chuẩn bị ở nhà.
- Gọi một số học sinh nhận xét bài giải của bạn theo định hướng 4 bước đã biết ở tiết 2.
- Uốn nắn sự biểu đạt của học sinh về tính toán, cách trình bày bài giải... 
Hoạt động 3: (5') (Nối tiếp hoạt động 2). Bảng phụ có nội dung
Cho hàm số f(x) = và các mệnh đề sau:
(I) : Trên khoảng (0; 3) hàm số f đồng biến
(II): Trong các khoảng (- ; 1) và (1; +) đồ thị của hàm số f đi lên từ trái qua phải.
(III): f(x) > f(2) với mọi x thuộc khoảng (2; + ).
Trong các mệnh đề trên có bao nhiêu mệnh đề đúng?
A. 1	B. 3	C. 2	D. 0
Hoạt động 4: ( Chữa bài tập 5a SGK) Chứng minh các bất đẳng thức sau:
 a) tgx > x ( 0 < x < ) 
Tg
Hoạt động của học sinh
Hoạt động của giáo viên
Nội dung
10'
+ Thiết lập hàm số đặc trưng cho bất đẳng thức cần chứng minh.
+ Khảo sát về tính đơn điệu của hàm số đã lập ( nên lập bảng).
+ Từ kết quả thu được đưa ra kết luận về bất đẳng thức cần chứng minh.
- Hướng dẫn học sinh thực hiện theo định hướng giải:
b) Xét hàm số g(x) = tanx - x xác định với các giá trị x Î và có: g’(x) = tan2x và g'(x) = 0 chỉ tại điểm x = 0 nên hàm số g đồng biến trên 
 Do đó 
g(x) > g(0) = 0 " x Î 
Cũng cố: (5') 1) Phương pháp xét sự đồng biến, nghịch biến của hàm số.
	2) Áp dụng sự đồng biến, nghịch biến của hàm số để chứng minh một số bất đẳng thức.
Bài tập về nhà: 1) Hoàn thiện các bài tập còn lại ở trang 11 (SGK)
 2) Giới thiệu thêm bài toán chứng minh bất đẳng thức bằng tính đơn điệu của hàm có tính phức tạp hơn cho các học sinh khá:
Chứng minh các bất đẳng thức sau:a) x - với các giá trị x > 0.
b) sinx > với x Î 

Tài liệu đính kèm:

  • docBai tap_Dong bien nghch bien.doc