Giáo án giải tích 12 CB tiết 66: Phương trình bậc hai với hệ số thực

Giáo án giải tích 12 CB tiết 66: Phương trình bậc hai với hệ số thực

Tiết 66 : PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC

I. Mục tiêu:

 1.Về kiến thức: Giúp học sinh nắm được: Căn bậc hai của một số thực âm; cách giải phương trình bậc hai với hệ số thực trong mọi trường hợp đối với Δ

2. Về kĩ năng: Học sinh biết tìm được căn bậc 2 của một số thực âm và giải phương trình bậc hai với hệ số thực trong mọi trường hợp đối với Δ

3.Về tư duy và thái độ

 - Rèn kĩ năng giải phương trình bậc hai trong tập hợp số phức.

 - Rèn tính cẩn thận ,chính xác

 

doc 3 trang Người đăng ngochoa2017 Lượt xem 701Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án giải tích 12 CB tiết 66: Phương trình bậc hai với hệ số thực", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 23/03/2011
Tiết 66 : PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC
I. Mục tiêu: 
 1.Về kiến thức: Giúp học sinh nắm được: Căn bậc hai của một số thực âm; cách giải phương trình bậc hai với hệ số thực trong mọi trường hợp đối với Δ 
2. Về kĩ năng: Học sinh biết tìm được căn bậc 2 của một số thực âm và giải phương trình bậc hai với hệ số thực trong mọi trường hợp đối với Δ
3.Về tư duy và thái độ 
 	- Rèn kĩ năng giải phương trình bậc hai trong tập hợp số phức.
 	- Rèn tính cẩn thận ,chính xác 
II. Chuẩn bị: 
 Giáo viên: Soạn giáo án, phiếu học tập ,đồ dùng dạy học
 Học sinh: Xem nội dung bài mới, dụng cụ học tập
II. Phương pháp: Gợi mở + nêu vấn đề đan xen hoạt động nhóm.
IV.Tiến trình bài học: 
 1.Ổn định lớp.
 2. Kiểm tra bài cũ: xen với giải bài tập.
 3.Bài mới :
Hoạt động 1: Tiếp cận khái niệm căn bậc 2 của số thực âm
Hoạt động của GV
Hoạt động của HS
Ghi bảng
H: Thế nào là căn bậc hai của một số thực dương a ?
H: Viết công thức nghiệm của phương trình bậc hai ?
* Ta có: với a > 0 có 2 căn bậc 2 của a là b = ± (vì b² = a)
* Vậy a < 0 có căn bậc 2 của a không ?
Để trả lời cho câu hỏi trên ta thực hiện ví dụ sau: 
Ví dụ 1: Tìm x sao cho 
x² = -1
Vậy số âm có căn bậc 2 không?
Þ -1 có 2 căn bậc 2 là ±i
Ví dụ 2: Tìm căn bậc hai của -4 ?
Tổng quát:Với a<0.Tìm căn bậc 2 của a
Chỉ ra được x = ±i
Vì i² = -1
(-i)² = -1
Þ số âm có 2 căn bậc 2 
Ta có( ±2i)²=-4
Þ -4 có 2 căn bậc 2 là 
± 2i
*Ta có (±i)²= -a
Þ có 2 căn bậc 2 của a là ±i 
1.Căn bậc 2 của số thực âm:
Với a<0 có 2 căn bậc 2 của a là 
 ±i 
Ví dụ :- 4 có 2 căn bậc 2 là ±2i
Hoạt động 2:Cách giải phương trình bậc 2 với hệ số thực 
Nhắc lại công thức nghiệm của phương trình bậc 2: 
ax² + bx + c = 0, a,b,c
 Δ > 0: pt có 2 nghiệm phân biệt:
 x1,2 = 
 Δ = 0: pt có nghiệm kép 
 x1 = x2 = 
 Δ < 0: pt không có nghiệm thực. 
*Trong tập hợp số phức,
Δ < 0 có 2 căn bậc 2, tìm căn bậc 2 của Δ
*Như vậy trong tập hợp số phức,Δ<0 phương trình có nghiệm hay không ?
Nghiệm bao nhiêu ?
Ví dụ :Giải các pt sau trên tập hợp số phức:
 a) x² - x + 1 = 0
 Chia nhóm ,thảo luận 
* Gọi đại diện mỗi nhóm trình bày bài giải 
→GV nhận xét, bổ sung (nếu cần).
*Giáo viên đưa ra nhận xét để học sinh tiếp thu. 
Þ 2 căn bậc 2 của Δ là ±i 
Þ Δ < 0 pt có 2 nghiệm phân biệt là:
 x1,2 = 
Δ = -3 < 0: pt có 2 nghiệm phân biệt 
 x1,2 = 
Chia nhóm ,thảo luận theo yêu cầu của giáo viên. 
2.Phương trình bậc 2:
 Phương trình bậc 2: 
ax² + bx + c = 0, a,b,c
+ Δ>0: pt có 2 nghiệm phân biệt
x1,2 = 
 + Δ = 0: pt có nghiệm kép 
x1 = x2 = 
+ Δ<0: pt không có nghiệm thực.
Tuy nhiên trong tập hợp số phức, pt có 2 nghiệm phân biệt
x1,2 = 
Nhận xét:(sgk)
VD: Giải các pt sau trong tập hợp số phức 
 a).x² + 4 = 0
 b).-x² + 2x – 5 = 0
 c). x4 – 3x2 – 4 = 0
 d). x4 – 9 = 0
Hoạt động 3: Giải BT
Hoạt động của GV
Hoạt động của HS
Ghi bảng
- Gọi 1 số học sinh đứng tại chỗ trả lời bài tập 1
- Gọi 3 học sinh lên bảng giải 3 câu a,b,c
Þ GV nhận xét, bổ sung (nếu cần).
- Gọi 2 học sinh lên bảng giải 
 Þ Cho HS theo dõi nhận xét và bổ sung bài giải (nếu cần). 
- Giáo viên yêu cầu học sinh nhăc lại cách tính 
z1+ z2, z1.z2 
trong trường hợp Δ > 0
- Yêu cầu học sinh nhắc lại nghiệm của pt trong trường hợp Δ < 0. ÞSau đó tính tổng z1+z2 tích z1.z2
- Yêu cầu học sinh tính z+z‾; z.z‾
→z,z‾ là nghiệm của pt 
 X² -(z+z‾)X+z.z‾ = 0
→Tìm pt
Trả lời được :
± I ; ± 2i ; ±2i ; ±2i ; ±11i.
a/ -3z² + 2z – 1 = 0
Δ΄= -2 < 0 pt có 2 nghiệm phân biệt.
 z1,2 = 
b/ 7z² + 3z + 2 = 0
Δ= - 47 < 0 pt có 2 nghiệm phân biệt. 
 z1,2 = 
c/ 5z² - 7z + 11 = 0
Δ = -171 < 0 pt có 2 nghiệm phân biệt
z1,2 = 
3a/ z4 + z² - 6 = 0
 z² = -3 → z = ±i
 z² = 2	 → z = ± 
3b/ z4 + 7z2 + 10 = 0
z2 = -5 → z = ±i
z² = - 2	 → z = ± i
Tính nghiệm trong trường hợp 
Δ < 0
Tìm được z1+z2 = 
 z1.z2 = 
z+z‾ = a+bi+a-bi=2a
z.z‾= (a+bi)(a-bi)
 = a² - b²i² = a² + b²
→z,z‾ là nghiệm của pt 
X²-2aX+a²+b²=0
Bài 1:
Bài 2:
Bài 3:
Bài 4:
z1+z2 = 
 z1.z2 = 
Bài 5:
Pt:X²-2aX+a²+b²=0
4.Củng cố:
- Nhắc lại căn bậc 2 của 1 số thực âm. 
- Công thức nghiệm pt bậc 2 trong tập hợp số phức. 
5.Hướng dẫn học bài ở nhà và ra bài tập về nhà. 
Dặn dò học sinh học lý thuyết và làm bài tập về nhà trong sách giáo khoa. 

Tài liệu đính kèm:

  • docpt bac hai voi he so thuc(1).doc