Giáo án Đại số lớp 12 - Tiết 7 - Bài 3: Giá trị lớn nhất giá trị nhỏ nhất của hàm số ( 3 tiết)

Giáo án Đại số lớp 12 - Tiết 7 - Bài 3:  Giá trị lớn nhất giá trị nhỏ nhất của hàm số ( 3 tiết)

/ Kiến thức:

+ Nắm được khái niệm về giá trị min, max của hàm số trên tập D ( )

+ Biết dùng công cụ đạo hàm để tìm min, max.

2/ Kỹ năng:

+ Thành thạo việc lập bảng biến thiên của hàm số trên tập D và theo dõi giá trị của hàm số biến đổi trên D để tìm min, max.

+ Vận dụng tốt quy tắc tìm min, max của hàm số trên đoạn [a; b]

3/ Tư duy, thái độ:

+ Vận dụng linh hoạt các phương pháp phù hợp cho từng bài toán cụ thể.

+ Khả năng nhìn nhận quy các bài toán thực tiễn về tìm min, max.

 

doc 3 trang Người đăng haha99 Lượt xem 713Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án Đại số lớp 12 - Tiết 7 - Bài 3: Giá trị lớn nhất giá trị nhỏ nhất của hàm số ( 3 tiết)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tr­êng THPT T©n Yªn 2
Tæ To¸n
	TiÕt theo ph©n phèi ch­¬ng tr×nh : 7.
	Ch­¬ng 1: øng Dông §¹o Hµm §Ó Kh¶o S¸t vµ VÏ §å ThÞ Hµm Sè
	§3: Gi¸ trÞ lín nhÊt gi¸ trÞ nhá nhÊt cña hµm sè ( 3tiÕt)	
Ngµy so¹n: 6/9/2009
TiÕt 1
I/ Mục tiêu:
1/ Kiến thức:
+ Nắm được khái niệm về giá trị min, max của hàm số trên tập D ()
+ Biết dùng công cụ đạo hàm để tìm min, max.
2/ Kỹ năng:
+ Thành thạo việc lập bảng biến thiên của hàm số trên tập D và theo dõi giá trị của hàm số biến đổi trên D để tìm min, max.
+ Vận dụng tốt quy tắc tìm min, max của hàm số trên đoạn [a; b]
3/ Tư duy, thái độ:
+ Vận dụng linh hoạt các phương pháp phù hợp cho từng bài toán cụ thể.
+ Khả năng nhìn nhận quy các bài toán thực tiễn về tìm min, max.
II/ Chuẩn bị của GV & HS:
+ GV: Giáo án đầy đủ, bảng phụ (Vd 1 SGK)
+ HS: Cần xem lại qui trình xét chiều biến thiên hàm số, SGK, sách bài tập.
III/ Phương pháp: Đàm thoại, gợi mở, nêu vấn đề.
IV/ Tiến trình tiết dạy:
1/ Ổn định tổ chức:
2/ Kiểm tra bài cũ: (5’)
Hỏi: Xét chiều biến thiên của h/s 
3/ Bài mới:
HĐ1: Xây dựng khái niệm về giá trị min, max của h/s trên tập hợp D.
Tg
HĐ của GV
HĐ của HS
Ghi bảng
3’
Bài toán: Xét h/s
+ Tìm TXĐ của h/s
+ Tìm tập hợp các giá trị của y
+ Chỉ ra GTLN, GTNN của y
GV nhận xét đi đến k/n min, max
a/ D= [ -3 ; 3]
b/ 
c/ + y = 0 khi x = 3 hoặc x = - 3 
+ y= 3 khi x = 0
a/ H/s xđ 
D= [-3;3]
b/ ta có: 
1/ Định nghĩa: SGK
HĐ 2: Dùng bảng biến thiên của h/s để tìm min, max.
Tg
HĐ của GV
HĐ của HS
Ghi bảng
7’
8’
Từ đ/n suy ra để tìm min, max của h/s trên D ta cần theo dõi giá trị của h/s với . Muốn vậy ta phải xét sự biến thiên của h/s trên tập D.
Vd1: Tìm max, min của h/s 
Vd2: Cho y = x3 +3x2 + 1
a/ Tìm min, max của y trên [-1; 2)
b/ Tìm min, max của y trên [- 1; 2]
Tổng kết: Phương pháp tìm min, max trên D
+ Xét sự biến thiên của h/s trên D, từ đó min, max
+ Tìm TXĐ
+ Tính y’
+ Xét dấu y’ => bbt
+ Theo dõi giá trị của y
KL min, max.
Tính y’ 
+ Xét dấu y’
+ Bbt => KL
Vd1:
D= R
x
y’
y
1
+
0
4
y’ = -2x + 2; y’ =0 óx=1
 khi x=1
h/s không có giá trị min trên R
Vd2: y’ = 3x2 + 6x
x
y’
y
-1
+
3
-2
0
2
 0
 0
 +
 +
21
1
y’ =0 ó
a/ 
Không tồn tại GTLN của h/s trên [-1;2)
b/ 
HĐ 3: Tìm min, max của h/s y = f(x) với x[a;b]
Tg
HĐ của GV
HĐ của HS
Ghi bảng
10’
Dẫn dắt:
Từ vd2b => nhận xét nếu hs liên tục trên [a;b] thì luôn tồn tại min, max trên [a;b] đó. Các giá trị này đạt được tại x0 có thể là tại đó f(x) có đạo hàm bằng 0 hoặc không có đạo hàm, hoặc có thể là hai đầu mút a, b của đoạn đó. Như thế không dùng bảng biến thiên hãy chỉ ra cách tìm min, max của y = f(x) trên [a;b]
VD: Cho y = - x4 +2x2 +1
Tìm min, max của y trên [0;3]
+ Tính y’
+ Tìm x0 [a;b] sao cho f’(x0)=0 hoặc h/s không có đạo hàm tại x0
+ Tính f(a), f(b), f(x0)
min, max
+tính y’
+ y’=0 
+ Tính f(0); f(1); f(3)
+ KL
Quy tắc: 
SGK trang 21
Gọi hs trình bày lời giải trên bảng
HĐ 4: Vận dụng việc tìm min, max để giải quyết các bài toán thực tế
Tg
HĐ của GV
HĐ của HS
Ghi bảng
10’
Có 1 tấm nhôm hình vuông cạnh a. Cắt ở 4 góc hình vuông 4 hình vuông cạnh x. Rồi gập lại được 1 hình hộp chữ nhật không có nắp.Tìm x để hộp này có thể tích lớn nhất.
H: Nêu các kích thước của hình hộp chữ nhật này? Nêu điều kiện của x để tồn tại hình hộp?
H: Tính thể tích V của hình hộp theo a; x.
H: Tìm x để V đạt max
TL: các kích thướt là: a-2x; a-2x; x
Đk tồn tại hình hộp là: 
V= x(a-2x)2 
 = 4x3 – 4ax2 + a2x
Tính V’= 12x2 -8ax + a2
V’=0 
Xét sự biến thiên trên 
Vmax= khi 
a
x
Bài toán:
Hướng dẫn hs trình bày bảng
x
V’
V
0
+
0
4/ Củng cố: (2’) 
+ Nắm được k/n. Chú ý 
+ Phương pháp tìm min, max trên tập D bằng cách dùng bbt của h/s
+ Nếu D=[a;b] thì có thể không dùng bảng biến thiên.
5/ Hướng dẫn học bài ở nhà:
+ Thuộc định nghĩa và nắm phương pháp tìm min, max
+ Bt 16 à 20. Bài tập phần luyện tập trang 23, 24 SGK.

Tài liệu đính kèm:

  • docDAI SO T7.doc