Giáo án Đại số 12 - Nâng cao - Chương 4: Số phức

Giáo án Đại số 12 - Nâng cao - Chương 4: Số phức

Số tiết: 1

SỐ PHỨC

I. Mục tiêu:

 + Về kiến thức: Giúp học sinh :

- Hiểu được nhu cầu mở rộng tập hợp số thực thành tập hợp số phức.

- Hiểu cách xây dựng phép toán cộng số phức và thấy được các tính chất của phép toán cộng số phức tương tự các tính chất của phép toán cộng số thực.

+ Về kĩ năng: Giúp học sinh

- Biết cách biểu diễn số phức bởi điểm và bởi vectơ trên mặt phẳng phức.

- Thực hiện thành thạo phép cộng số phức.

+ Về tư duy và thái độ: tích cực hoạt động, có tinh thần hợp tác.

II. Chuẩn bị của giáo viên và học sinh:

 + Giáo viên: Giáo án, phiếu học tập.

 + Học sinh: Các kiến thức đã học về các tập hợp số.

 

doc 37 trang Người đăng ngochoa2017 Lượt xem 2224Lượt tải 5 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án Đại số 12 - Nâng cao - Chương 4: Số phức", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Số tiết: 1
SỐ PHỨC
I. Mục tiêu:
	+ Về kiến thức: Giúp học sinh :
Hiểu được nhu cầu mở rộng tập hợp số thực thành tập hợp số phức.
Hiểu cách xây dựng phép toán cộng số phức và thấy được các tính chất của phép toán cộng số phức tương tự các tính chất của phép toán cộng số thực.
+ Về kĩ năng: Giúp học sinh 
Biết cách biểu diễn số phức bởi điểm và bởi vectơ trên mặt phẳng phức.
Thực hiện thành thạo phép cộng số phức.
+ Về tư duy và thái độ: tích cực hoạt động, có tinh thần hợp tác.
II. Chuẩn bị của giáo viên và học sinh:
	+ Giáo viên: Giáo án, phiếu học tập.
	+ Học sinh: Các kiến thức đã học về các tập hợp số.
III. Phương pháp: Thuyết giảng, gợi mở, vấn đáp, hoạt động nhóm.
IV. Tiến trình bài dạy:
	1. Ổn định tổ chức: Ổn định lớp, điểm danh.
	2. Bài mới:
Hoạt động 1: Hình thành khái niệm số phức
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
HĐTP1: Mở rộng tập số phức từ tập số thực
H: Cho biết nghiệm của PT x2 – 2 = 0 trên tập Q? Trên tập R?
 GV: Như vậy một PT có thể vô nghiệm trên tập số này nhưng lại có nghiệm trên tập số khác.
H: Cho biết nghiệm của PT x2 + 1 = 0 trên tập R?
GV: Nếu ta đặt i2 = - 1 thì PT có nghiệm ?
GV: Như vậy PT lại có nghiệm trên một tập số mới, đó là tập số phức kí hiệu là C.
HĐTP2: Hình thành khái niệm về số phức
 H : Cho biết nghiệm của PT (x-1)2 + 4 = 0 trên R? Trên C?
GV: số 1 + 2i được gọi là 1 số phức => ĐN1: GV giới thiệu dạng z = a + bi trong đó a, b R, i2 = - 1, i: đơn vị ảo, a: phần thực, b: phần ảo.
H: Nhận xét về các trường hợp đặc biệt a = 0, b = 0?
H: Khi nào số phức a + bi =0? 
H: Xác định phần thực, phần ảo của các số phức sau z = 3 + i và z’ = - i?
H: Hai số phức z = a + bi và z’ = a’ + b’i bằng nhau khi nào ?
=> ĐN2
Đ: PT vô nghiệm trên Q, có 2 nghiệm x = , x = - trên R
Đ: PT vô nghiệm trên R.
Đ: PT x2 = - 1 = i2 có 2 nghiệm x = i à x = - i
Đ: PT vô nghiệm trên R, có 2 nghiệm x = 1 + 2i và x = 1 – 2i trên C.
Nhắc lại ĐN về số phức
Đ: b=0: z = a R C
a =0: z = bi
Đ: a = 0 và b = 0
HS trả lời
Đ: a = a’ và b = b’
1. Khái niệm số phức:
* ĐN1 : sgk
* Chú ý:
+ Số phức z = a + 0i = a R C: số thực
+ Số phức z = 0 + bi = bi: số ảo
+ Số 0 = 0 + 0i = 0i : vừa là số thực vừa là số ảo.
ĐN2: sgk
Hoạt động 2: Biểu diễn hình học số phức
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
Ta đã biết biểu diễn số thực trên trục số ( trục Ox) tương tự ta cũng có thể biểu diễn số ảo trên trục Oy ^Ox. Mặt phẳng Oxy gọi là mặt phẳng phức. Một số phức z=a+bi được biểu diến hình học bởi điểm M(a,b) trên mặt phẳng Oxy
H: Biểu diến các số sau:
z=-2
z1=3i
z2=2-i
Nghe hiểu
HS: Biểu diến hình học
2. Biểu diễn hình học của số phức:
O
y
M(z)
a
b
x
Hoạt động 3: Tiếp cận định nghĩa và tính chất phép cộng số phức
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
H: z1=2-3i ; z2=-1+i
Tính z1+z2=?
H: Cho z=a+bi, z’=a’+b’i. Tính z+z’?
® định nghĩa 3
H: Nhắc lại các tính chất của số thực?
Gv: số phức cũng có các tính chất tương tự số thực
® nêu các tính chất
Đ: z1+z2=1-2i
Đ: z+z’=a+a’+(b+b’)i
Đ: Trả lời câu hỏi của GV
Nghe, ghi nhớ
3. Phép cộng và phép trừ số phức:
a. Phép cộng số phức:
ĐN3: (sgk)
b. Tính chất của phép cộng số phức: sgk
Hoạt động 4: Bài tập vận dụng
	Phiếu học tập: 
	Cho số phức z = 2-3i
Xác định phần thực, phần ảo
Biểu diến hình học số phức z
Xác định số đối của z và biểu diễn hình học trong mặt phẳng phức
4. Củng cố toàn bài: Nhắc lại các khái niệm số phức, biểu diễn hình học, phép cộng và các tính chất
5. Hướng dẫn học bài ở nhà và ra bài tập về nhà: làm BT 1, 2, 3 trang 189 SGK, học bài và xem bài mới
SỐ PHỨC (Tiết 2)
I. Mục tiêu:
	+ Về kiến thức: Giúp học sinh :
Hiểu cách xây dựng phép trừ số phức từ phép toán cộng.
Hiểu cách xây dựng phép nhân số phức từ phép toán cộng và nhân các biểu thức dạng a + bi.
Thấy được các tính chất của phép nhân số phức tương tự phép nhân số thực.
+ Về kĩ năng: Giúp học sinh thực hiện thành thạo phép trừ, nhân số phức.
+ Về tư duy và thái độ: tích cực hoạt động, có tinh thần hợp tác.
II. Chuẩn bị của giáo viên và học sinh:
	+ Giáo viên: Giáo án, phiếu học tập.
	+ Học sinh: Học bài cũ và làm bài tập ở nhà.
III. Phương pháp: Thuyết giảng, gợi mở, vấn đáp, hoạt động nhóm.
IV. Tiến trình bài dạy:
	1. Ổn định tổ chức: Ổn định lớp, điểm danh.
	2. Kiểm tra bài cũ:
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
H: Cho 2 số phức z = -2 + i, z’ = 1 – 3i
Tìm số đối của z’
Tính tổng z + (-z’)
GV: Nhận xét z + (-z’) = -2 + i + (-1) +3i = -2 + i - (1-3i) = z – z’
=> ĐN hiệu 2 số phức
Nghe, hiểu và thực hiện nhiệm vụ
Đ: - z’ = -1 + 3i
 z + (-z’) = -2 + i + (-1) +3i = - 3 + 4i
HS trình bày lời giải
 	3. Bài mới:
Hoạt động 1:
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
GV đưa ra quy tắc tính hiệu 2 số phức
H: z = 2 - 3i, z’ = - 3 – i
Tính z -z’
Đ: z -z’ = 5 – 2i
3. Phép cộng và trừ số phức:
c. Phép trừ 2 số phức:
* ĐN4: sgk’ 
* NX: Cho z = a + bi, z’ = a’ + b’i. Khi đó z – z’ = a – a’ + (b – b’)i
Hoạt động 2: Ý nghĩa hình học của phép cộng và phép trừ số phức:
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
NX: Cho điểm M(a;b) biểu diễn số phức z = a + bi, khi đó vectơ cũng biểu diễn cho số phức z = a + bi
H: Cho z = 2 -3i , z’= -1+2i
Tìm các vectơ và biểu diễn các số phức z và z’.
Tìm tọa độ của vectơ + , - và tính z + z’, z – z’
H: NX gì về mối liên hệ giữa tọa độ + và z + z’, - và z – z’
Nghe, hiểu và thực hiện nhiệm vụ.
HS lên bảng và trình bày lời giải.
(2;-3), (-1;2)
 + = (1;-1)
z + z’= 1 – i
 - = (3;-5)
z – z’ = 3 – 5i
KL: Nếu và biểu diễn cho số phức z và z’ thì vectơ + , - biểu diễn cho số phức z + z’, z – z’.
Hoạt động 3: Tiếp cận phép nhân số phức
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
H: Cho z=a+bi, z’=a’+b’i. Tính z.z’=?
H: Tính z.z’ biết 
z=2-5i, z’=+2i
z=3-i, z’=3+i
Gv hướng dẫn học sinh lưu ý dùng hằng đẳng thức a2-b2
H: Tính 3(2-5i)
® Tổng quát hóa công thức k(a+bi)
H: Cho số phức z=a+bi
Tính z2
Tìm những đặc điểm của mặt phẳng phức biểu diễn các số phức z sao cho z2 là số thực?
Dùng tính chất phân phối của phép nhân và phép cộng thông thường để đưa ra kết quả
- Áp dụng công thức đưa ra kết quả
- HS trình bày kết quả lên bảng
Nêu công thức
Hs trình bày lời giải 
z2=a2-b2+2abi
z2ÎRÛa=0 hoặc b=0
Vậy tập hợp những điểm M nằm trên trục thực hoặc trục ảo
4. Phép nhân số phức:
ĐN5: sgk
zz’=aa’-bb’+(ab’+a’b)
Hs trình bày bảng
Lưu ý: k(a+bi)=ka+kbi
Lưu ý: Có thể dùng hằng đẳng thức để tính giống như cộng, trừ, nhân, chia thông thường
Hoạt động 5: Tính chất của phép nhân số phức
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
VD: Hãy phân tích z2+4 thành nhân tử
Gv hướng dẫn hs đặt i2=-1 rồi phân tích theo hằng đẳng thức
Hs thực hiện
z2-4i2=z2-(2i)2
Tính chất của phép nhân số phức: sgk Đặt i2=-1
z2+4=z2-4i2
=(z-2i)(z+2i)
4. Củng cố toàn bài:
	Nhắc lại các tính chất của phép nhân các số phức
5. Hướng dẫn học bài ở nhà và ra bài tập về nhà: BT sgk
Số tiết: 1	ChươngIV§1 
SỐ PHỨC (Tiết 3)
I. Mục tiêu:
	+ Về kiến thức: Giúp học sinh :
Hiểu cách định nghĩa số phức liên hợp và 2 tính chất cơ bản liên quan đến khái niệm này là số phức liên hợp của tổng, tích và mô đun của số phức. 
Hiểu được định nghĩa và phép chia cho số phức khác 0.
+ Về kĩ năng: Giúp học sinh 
Biết xác định số phức liên hợp.
Thực hiện thành thạo phép chia số phức.
+ Về tư duy và thái độ: tích cực hoạt động, có tinh thần hợp tác.
II. Chuẩn bị của giáo viên và học sinh:
	+ Giáo viên: Giáo án, phiếu học tập.
	+ Học sinh: Học bài cũ và làm bài tập ở nhà.
III. Phương pháp: 
Thuyết giảng, gợi mở, vấn đáp, hoạt động nhóm.
IV. Tiến trình bài dạy:
	1. Ổn định tổ chức và kiểm tra bài cũ:
	H1: Nêu các phép cộng, trừ, nhân số phức và các tính chất của các phép toán trên
	H2: Áp dụng tính (3-i)(1+2i)
	2. Bài mới:
Hoạt động 1: Số phức liên hợp
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
Tìm biểu thức liên hợp của và a, bÎR*
Gv liên hệ đưa ra định nghĩa số phức liên hợp
Cho ví dụ: 
Gọi hs cho vài ví dụ
 có biểu thức liên hợp là 
Cho ví dụ
Định nghĩa: Số phức liên hợp của z=a+bi với a,bÎR là a-bi kí hiệu là 
Þ
Hoạt động 2: Làm H6 và H7 sgk
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
Gọi học sinh chứng minh số phức z là số thực z= 
Nhận xét và ghi bảng.
Gọi học sinh chứng minh z= a2 +b2
Trình bày cách chứng minh .
Nhận xét.
Nêu cách chứng minh 
HS: Biểu diến hình học
z là số thực => z=a+0i=a
=>= a-0i=a.
Ngược lại z= tức là
a+bi = a-bib=0.
=> z là số thực 
Hoạt động 3: Mô đun của số phức
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
Vẽ hệ trục trục tọa độ:
Ta có = = .
Đưa ra định nghĩa .
Đưa ra ví dụ
Học sinh nêu lại công thức tính độ dài (Mô đun) của véctơ =(a,b)
O
y
M(z)
a
b
x
Đn: SGK
 =
Vd: =1
=.
Chú ý: z R => là giá trị tuyệt đối.
z=0=>=0
Phép chia cho số phức khác 0
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
Cho z = a + bi (a,b R) .
z – 1 = = ==
Vậy z . z – 1 = = 1
Cho ví dụ : 
Học sinh nắm cách biến đổi
Rút ra nghịch đảo của số phức
Đn: z 0 => z – 1 = 
Thương =z’.z – 1 = 
Hoạt động 5: Bài tập củng cố
	Phiếu học tập: 
	Cho số phức z=2+3i, z’=2-3i
Tính, , , 
Tìm Mô đun z, z’, z.z’
Tính , 
4. Củng cố toàn bài: Nhắc lại các khái niệm số phức, biểu diễn hình học, phép cộng và các tính chất
5. Hướng dẫn học bài ở nhà và ra bài tập về nhà: làm BT còn lại trang 190, 191 SGK, học bài và xem bài mới
Số tiết: 1
ChươngIV §1 LUYỆN TẬP SỐ PHỨC
( chương trình nâng cao )
I. Mục tiêu:
	+ Về kiến thức: Giúp học sinh :
Ôn lại kiến thức lý thuyết về số phức đã học
Làm được các bài tập sách giáo khoa.
+ Về kĩ năng: 
Rèn cho học sinh kĩ năng thực hiện các phép tính với số phức.
+ Về tư duy và thái độ: 
 - Tích cực hoạt động, có tinh thần hợp tác.
II. Chuẩn bị của giáo viên và học sinh:
	+ Giáo viên: Giáo án, phiếu học tập.
	+ Học sinh: Các kiến thức đã học về các tập hợp số.
III. Phương pháp: Thuyết giảng, gợi mở, vấn đáp, hoạt động nhóm.
IV. Tiến trình bài dạy: 
	1. Ổn định tổ chức: Ổn định lớp, điểm danh.
 2. Kiểm tra bài cũ: (5’)
 Câu hỏi: cho z = - 2 + 3i
 Hãy tính : 1+z+z, 
 GV gọi HS lên bảng giải.
 GV nhận xét và cho điểm.
	3. Bài mới:
Hoạt động 1: giải bài tập 10 ( chứng minh )
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
5’
GV ghi đề bài tập 10
GV nhắc lại nhận xét: 
=w zw = z’ 
Gọi HS nêu hướng giải
Gọi HS lên bảng giải
GV nhận xét và kết luận
HS lắng nghe
HS nêu hướng giải
HS lên bảng giải
 LUYỆN TẬP
Bài10.CMRsố phức z1:
1+z+z+..+z =
 Giải:
 (1+z+z+..+z)(z-1) = z+z+..+z-(1+z+..+z)
= z- 1
1+z+z+..+z =
Hoạt động 2 : giải bài tập 11 ( hỏi số sau là số thực hay số ảo , với số phức z tùy ý )
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
10’
GV ghi đề bài tập 11 a,c
GV cung cấp cho HS =
Từ =., gọi HS nhận xét = ?
GV: làm sao biết số phức có thể là số thực hay số ảo?
GV: gọi 2 HS lên tìm số phức liên hợp 
GV: gọi HS nhận xét lại
GV: giảng giải và kết luận
G ... ập 6b, 8b .
*Gợi ý: Z = a + bi =0 ó 
ØTrả lời
Ø- Cộng: Giao hoán, kết hợp 
- Nhân: Giao hoán, kết hợp, phân phối.
Ø Lên bảng thực hiện
III/ Các phép toán :
Cho hai số phức:
Z1 = a1 + b1i
Z2 = a2 + b2i
*Cộng: 
Z1+Z2= a1+ a2+(b1+b2)i
* Trừ:
Z1-Z2= a1- a2+(b1-b2)i
* Nhân:
Z1Z2= a1a2- b1b2 +
(a1b2+a2b1)i
* Chia :
6b)Tìm x, y thỏa :
2x + y – 1 = (x+2y – 5)i
8b) Tính : (4-3i)+
= 4- 3i +
= 4 – 3i + 
Hoạt động 4: Căn bậc hai của số phức – Phương trình bậc hai 
ØNêu cách giải phương trình bậc hai: ax2 + bx + c = 0: a, b, c C và a 0 ?
Ø Yêu cầu HS giải bài tập 10a,b 
ØNêu các bước giải – ghi bảng
Ø Thực hiện
ax2 + bx + c = 0: a, b, c C và a 0.
* Lập = b2 – 4ac
Nếu : 
Trong đó là một căn bậc hai của ∆.
10a) 3Z2 +7Z+8 = 0
Lập = b2 – 4ac = - 47
Z1,2 = .
10b) Z4 - 8 = 0.
 ó 
ó 
4/Củng cố: - Nhắc lại hệ thống các kiến thức cơ bản : ĐN số phức, số phức liên hợp- Giải phương trình bậc hai với hệ số thực.
- HS thực hiện trên 3 phiếu học tập.
5/ Dặn dò: - Nắm vững lý thuyết chương 4.
- Giải các bài tập còn lại của chương - Xem lại bài tập đã giải.
-Chuẩn bị tiết sau kiểm tra 1 tiết của chương 4
V/ Phụ lục: 
Phiếu học tập số 1: 
Câu 1: Số phức Z = a + bi thỏa điều kiện nào để có điểm biểu diễn M ở phần gạch chéo trong hình a, b, c.
2) Phiếu học tập số 2:
Câu 2: Giải phương trình : Z4 – Z2 – 5 = 0.
3) Phiếu học tập số 3: 
Câu 3: Tìm hai số phức Z1, Z2 thỏa : Z1 + Z2 = 1 và Z1Z2 = 7 
Trường : THPT QUẾ SƠN TÊN BÀI HỌC:
Ngày soạn:11/08/2008 LUYỆN TẬP: DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC 
Số tiết: 1 VÀ ỨNG DỤNG 
I/ Mục tiêu :
 + Về kiến thức :
 Giúp học sinh củng cố kiến thức: 
 ; dạng lượng giác của số phức; công thức nhân, chia số phức dưới 
 dạng lượng giác; công thức Moa-vrơ)
 + Về kỹ năng :
 Rèn luyện cho học sinh các kỹ năng:
 + Về tư duy và thái độ. 
 Có thái độ hợp tác 
 Tích cực hoạt động
II/ Chuẩn bị của giáo viên và học sinh
 + Giáo viên : Giáo án, phiếu học tập.
 + Học sinh: Học bài và làm bài tập ở nhà 
III/ Phương pháp : Gợi mở, chất vấn,hoạt động nhóm
IV/ Tiến trình bài dạy 
 1/ Ổn định tổ chức: Ổn định lớp, điểm danh 
 2/ Kiểm tra bài cũ: ( Kết hợp trong các hoạt động)
 3/ Bài tập:
 Hoạt động 1 Củng cố và rèn luyện kỹ năng viết dạng lượng giác của số phức
TG 
 Hoạt động của giáo viên
 Hoạt động của học sinh
 Ghi bảng 
10'
+CH1(Nêu cho cả lớp)
Để tìm dạng lượng giác r(cos + isin) của số phức a + bi khác 0 cho trước ta cần tính các yếu tố nào?
Chỉ định 1 HS trả lời
GV: chính xác hóa vấn đề
+ Chỉ định 1 học sinh lên bảng giải 36a
Gọi một học sinh nhận xét bài làm của bạn
 GV: chính xác hóa,chỉnh sửa (nếu có),cho điểm.
Trả lời:
r = 
: trong đó 
cos= ,sin= 
1 HS lên bảng giải
Các học sinh còn lại giải vào giấy nháp
Hs nhận xét
Ghi nhận vấn đề
Đề BT 36a Sgk
Bài giải của học sinh
 (đã chỉnh sửa)
ĐS: z = 
Hướng dẫn giải BT 36b
Tiếp thu, về nhà giải 
+ Chỉ định 1 học sinh lên bảng giải 36c
Gọi một học sinh nhận xét bài làm của bạn
 GV: chính xác hóa,chỉnh sửa (nếu có), cho điểm 
HĐ thêm: Có thể dùng công thức chia 2 số phức dạng lượng giác để giải
Khắc sâu: r > 0 suy ra các trường hợp
1 HS lên bảng giải
Các học sinh còn lại giải vào giấy nháp
Hs nhận xét
Ghi nhận vấn đề
Đề BT 36c Sgk
Bài giải của học sinh
 (đã chỉnh sửa)
ĐS: 
Nếu sin>0 thì z = 
2sin
Nếu sin<0 thì z = 
-2sin
Nếu sin=0 thì 
 z = 0(cos+ isin) (R)
HĐ2: Bt Áp đụng công thức Moa-vrơ 
TG
Họat động của giáo viên
Họat động của học sinh
Ghi bảng
5'
+CH2(Nêu cho cả lớp)
Nêu công thức Moa-vrơ Chỉ định 1 HS trả lời
GV: chính xác hóa vấn đề
+ Chỉ định 1 học sinh lên bảng giải 32
Gọi một học sinh nhận xét bài làm của bạn
 GV: chính xác hóa,chỉnh sửa (nếu có), cho điểm. 
Hs trả lời
1 HS lên bảng giải
Các học sinh còn lại giải vào giấy nháp
Hs nhận xét
Ghi nhận vấn đề
Ghi công thức Moa-vrơ
Đề BT 32 Sgk
Bài giải của học sinh
 (đã chỉnh sửa)
ĐS: 
cos4=
cos4+sin4- 6cos2sin2 
sin4=
4cos3sin- 4sin3cos 
 HĐ3: Bt kết hợp dạng lượng giác của số phức và áp dụng công thức Moa-vrơ 
Tg
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
7'
+ Chỉ định 1 học sinh lên bảng giải 33a và 33c
Chia bảng làm 2 cột
Gợi ý: Viết dạng lượng giác của số phức z rồi áp dụng công thức Moa-vrơ để tính zn.
Gọi một học sinh nhận xét bài làm của bạn
 GV: chính xác hóa,chỉnh sửa (nếu có), cho điểm. 
1 HS lên bảng giải
Các học sinh còn lại giải vào giấy nháp
Hs nhận xét
Ghi nhận vấn đề
Đề BT 33a và 33c Sgk
Bài giải của học sinh
 (đã chỉnh sửa)
ĐS: 
a/ (
c/ 
 HĐ4: Hướng dẫn giải Bt 34
Tg
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
5’
Hướng dẫn:
Viết dạng l.giác của 
Dùng công thức Moa-vrơ để n.
+CH3(Nêu cho cả lớp)
n là số thực khi nào?
n là số ảo khi nào?
Giáo viên dẫn dắt đi đến kết quả
Nghe hiểu ,tiếp thu
Trả lời:
 sin=0,
 cos=0
Ghi nhận
ĐS: 
 = cosisin
n = cosisin
a/ n là số thực khi n là bội nguyên dương của 3
b/ Không tồn tại n để n là số ảo
 HĐ5: Hướng dẫn giải Bt 35 – Nhân, chia số phức dạng lượng giác
Tg
Hoạt động của giáo viên
Hoạt động của HS
Ghi bảng
5’
+CH3(Nêu cho cả lớp)
1)Công thức nhân, chia số phức dạng lượng giác?
2)Cách tính acgumen và môđun của tích hoặc thương 2 số phức?
3) Dạng lượng giác của căn bậc 2 của số phức z?
 4) Acgumen của i? suy ra của z = ?
Gợi ý dẫn dắt để các em có được kiến thức chính xác. 
Trả lời:
 suy ra 
Đề BT 35a Sgk
Đáp số 
a) Acgumen của z = là
z = 3 
Dạng lượng giác của căn bậc 2 của số phức z là:
()
Hướng dẫn: Gọi acgumen của z là ,tính acgumen của theo rồi suy ra .
Nghe hiểu, ghi nhận
Đề BT 35b Sgk
Gọi là 1 acgumen của z là 
suy ra 1 acgumen của là - 
suy ra có 1 acgumen là --
Từ giả thiết suy ra
- - = - +k.2(kZ)
 Suy ra = +l.2(lZ)
chọn = 
Đáp số z = 
Dạng lượng giác của căn bậc 2 của số phức z là:
 HĐ6: Hoạt động nhóm củng cố kiến thức
Tg
Hoạt động của giáo viên
Hoạt động của HS
Ghi bảng
10’
Phát phiếu học tập cho học sinh(6 nhóm)
Gọi đại diện 2 nhóm 1,2 trình bày bài giải vào 2 cột bảng( mỗi nhóm trình bày 1 bài)
Gọi HS nhóm khác nhận xét
Giáo viên chỉnh sửa(nếu cần)
Thảo luận làm bài
Thực hiện yêu cầu
Tham gia nhận xét
Ghi nhận 
Bài giải HS(đã chỉnh sửa)
1/ z= Suy ra z12 = ()12(- 1 + 0)
 = -26 
2/ Gọi là 1 acgumen của z là 
suy ra 1 acgumen của là - 
(1 acgumen của 2 + 2i là )
 suy ra có 1 acgumen là - 
Từ giả thiết suy ra
- = - +k.2(kZ)
 Suy ra = +l.2(lZ)
chọn = 
Đáp số z = 2 
Dạng lượng giác của căn bậc 2 của số phức z là:
và 
 HĐ7: Dặn dò,BT thêm(2’)
 Về nhà ôn bài và làm phần BT ôn chương
 BT thêm: Tìm n để a/ là số thực. b/ là số ảo. 
PHIẾU HỌC TẬP
1/ Viết dạng lượng giác của số phức z = rồi tính z12.
2/ Viết dạng lượng giác của số phức z biết =2 và 1 acgumen của là - . 
ĐỀ KIỂM TRA 1 TIẾT:
MÔN:GIẢI TÍCH 12
Chương IV
Mục đích yêu cầu : Học sinh nắm được :
Các phép toán cộng, trừ ,nhân, chia số phức dạng đại số 
Mô đun của số phức, số phức liên hợp, căn bậc hai của số phức
Dạng lượng giác, argument của số phức, phép nhân, chia dạng lượng giác của số phức
Mục tiêu :
Đánh giá khả năng tiếp thu bài của học sinh.
Học sinh nắm vững và hệ thống các kiến thức đã học trong chương
Ma trận đề:
Mức độ
Nội dung
Nhận biết
Thông hiểu
Vận dụng
Tổng
TN
TL
TN
TL
TN
TL
Số phức và các phép toán về số phức
2
 0,8 
1	
0,4
1
2,0
1
0,4
5
3,6
Căn bậc hai và phương trình bậc hai của số phức
2
0,8
2
2,0
4
2,8
Dạng lượng giác của số phức và ứng dụng
2
0,8
1
0,4
1
0,4
1
2,0
5
3,6
Tổng cộng
4
1,6
4
1,6
3
4,0
2
0,8
1
2,0
14
10
IV. Nội dung đề:
A.Trắc nghiệm:
1.Số z=a+bi là một số thực hoặc là số thuần ảo khi và chỉ khi:
a.z=0 	b.|z| là số thực 	c. a=0 hoặc b=0 	d. b=0
2.Một căn bậc hai của z=5+12i là:
a.3-2i 	b.3+2i 	c.2+3i 	d. 2-3i
3.Số phức nghịch đảo của z=bằng số nào sau đây:
a.1	b.2i	c.-1-i	d.i
4.Số phức 1- i có dạng lượng giác là:
a. 2(cos+isin)	b. -2(cos+isin)	
c. -2(-cos+isin)	d.()	
5. Gọi M là điểm biểu diễn số phức z trên mặt phẳng phức. Khi đó, số -z được biểu diễn bởi điểm nào sau đây?
	a. Đối xứng với M qua O	b. Đối xứng với M qua Oy
	c. Đối xứng với M qua Ox	d. Không xác định được
6. Cho A, B, M lần lượt là ảnh của các số -4, 4i, x+3i. Giá trị xÎR để A, B, M thẳng hàng là:
	a. x=1	b. x=-1	c. x=2	d. x=-2
7. Argument của số phức (1+i)4 là:
	a. 450	b. 900	c. 1800	d. 1350
8. Cho z=. Định số nguyên n nhỏ nhất để zn là số thực?
	a. 1	b. 2	c. 3	d. 4
9. Phương trình (1+2i)x=3x-i cho ta nghiệm:
	a. 	b. 1+3i	c. 	d. 
10. Nếu z=cosa+sina.i thì ta có thể kết luận:
	a. z=1	b. z= -1	c. |z|=1	d. Kết quả khác
B. Tự luận:
Thực hiện phép tính: 
Giải phương trình sau trên C: z2+8z+17=0
Cho phương trình z2+kz+1=0 với kÎ[-2,2]
Chứng minh rằng tập hợp các điểm trong mặt phẳng phức biểu diễn các nghiệm của phương trình trên khi k thay đổi là đường tròn đơn vị tâm O bán kính bằng 1.
Đáp án:
A. Trắc nghiệm:
Câu
1
2
3
4
5
6
7
8
9
10
Đáp án
c
b
d
a
a
b
c
c
a
c
B. Tự luận:
Câu
Nội dung đáp án
Điểm
1
Biến đổi 
1 điểm
1 điểm
2
D’=-1 
Þ
Phương trình có 2 nghiệm 
z1=-4+i
z2=-4-i
0,5 điểm
0,5 điểm
0,5 điểm
0,5 điểm
3
Phương trình có các nghiệm
z1=
z2=
Phần thực: a=
Phần ảo: b= ()
Diểm M(a,b) thỏa a2+b2=
ÞM thuộc đường tròn đơn vị x2+y2=1 tâm O bán kính R=1
0,5 điểm
0,5 điểm
0,5 điểm
0,5 điểm
Ngày soạn 12/8/2008
	KIỂM TRA 45 PHÚT (NÂNG CAO)
 I/Mục đích yêu cầu: Học sinh cần nắm vững:
 -Dạng đại số,biểu qiễn hình học của số phức,cọng ,trừ ,nhân,chia số phức dưới dạng đại số.
 -Mô đun của số phức ,số phức liên hợp ,căn bậc hai cùa số phức.
 -dạnh lượng giác ,acgumen của số phức ,phép nhân ,chia hai số phức dưới phức dưới dạng lượng giác ,công thức Moa vrơ.
 II/Mục tiêu: Giúp học sinh thành thạo các kĩ năng:
 -biẻu diễn hình học số phức .
 -Thực hiện các phép cọng trừ nhân chia hai số phức dưới dạng đại số,phép nhân ,chia hai số phức dưới dạng lượng giác.
 -biết chuyển dạng đại số của số phức sang dạng lượng giác.
 -biết giải phương trình bậc hai.
 -ứng dụng được công thức Moa vrơ vào một số tính toán lượng giác.
 III/Ma trận đè:
 NB
TH 
VD 
TỔNG 
CHỦ ĐÈ 
KQ TL 
KQ TL 
KQ TL 
KQ TL 
 Số phức
 1 1,5
 2 2,5
 1 1
  5
 PTbậc hai
 1 1,5 
1 1,5 
  3
Dạng lượng giác
 2 2
  2
Tổng
2 
 5
 1
8 10 
 1V/Đè:
 Câu1(3 điểm) Xác định phần thực ,phần ảo của mỗi số sau:
2i +1-i –(3 +8i)
 Câu2L(2điểm)Cho số phức z =x +yi ,x,yR
 a)Tính khi x=y=2.
 b)Xác địng các điểm trong mặt phẳng phức biểu diễ các số phức z biết =3.
 Câu3L(3điểm) Tìm ngiệm phức của mỗi phương trìng sau:
 a) z2 -2z + 2 = 0 b) z3 +8 = 0.
 Câu 4 (2 điẻm)Cho z=1+
 a)Viết dạng của z. b)Tính z6.
V/ Đáp án và biểu điểm:
1aTính ra -2 -7i
 Phần thực -2
 Phần ảo
1bTính ra -4 -3i
 Phần thực 
 Phần ảo
0,5
0,5
O,5
0,5
O,5
0,5
 2a)tính ra 
 2b)=3 x2+ (y +1)2 = 9
 Kết luận Đường tròn tâm I(0; -1) bán kính R=3
1
 0,75
0,25
 3a)=4-8= -4
 =(2i)2
 Hai nghiệm 1+i ,1-i
 Tính được (z+2)(z2-2z +4) =0
 z+2 =0 hoặc (z2-2z +4) =0
 Đúng nghiệm
0,5
0,5
0,5
0,5
0,5
0,5
 4a)Tính môđun r =2 cos=1/2,sin=/2
 Dạng z =2(cos+i sin)
 b) z6 =26(cos2 +i sin2)
 =64
0,5
0,5
0,5
0,5

Tài liệu đính kèm:

  • docchuong 4.doc