I. Mục tiêu
Kiến thức
- Hiểu khái niệm phương trình, nghiệm của phương trình.
- Hiểu định nghĩa hai phương trình tương đương và các phép biển đổi tương đương.
- Biết khái niệm phương trình hệ quả.
Kĩ năng
- Nhận biết một số cho trước là nghiệm của phương trình đã cho, nhận biết được hai phương trình tương đương.
- Nêu được điều kiện xác định của phương trình.
- Biết biến đổi tương đương phương trình.
Thái độ:
- Rèn luyện tính cẩn thận, chính xác.
Chương III. PHƯƠNG TRÌNH. HỆ PHƯƠNG TRÌNH Ngày soạn: 15/10/2010 §1 ĐẠI CƯƠNG VỀ PHƯƠNG TRÌNH Tiết 26 I. Mục tiêu Kiến thức Hiểu khái niệm phương trình, nghiệm của phương trình. Hiểu định nghĩa hai phương trình tương đương và các phép biển đổi tương đương. Biết khái niệm phương trình hệ quả. Kĩ năng Nhận biết một số cho trước là nghiệm của phương trình đã cho, nhận biết được hai phương trình tương đương. Nêu được điều kiện xác định của phương trình. Biết biến đổi tương đương phương trình. Thái độ: Rèn luyện tính cẩn thận, chính xác. II. Phương pháp, phương tiện Phương pháp: Đàm thoại, gợi mở nêu vấn đề. Phát huy tính tích cực của học sinh. Phương tiện: Sách giáo khoa, sách giáo viên, sách tham khảo. III. Tiến trình bài dạy 1. Ổn định tổ chức Lớp Tiết Sĩ số Thứ / Ngày Ghi Chú 10N1 10N2 2. Kiểm tra bài cũ Tìm tập xác định của hàm số: y = f(x) = ; y = g(x) = 3. Bài mới Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung Hoạt động 1: Tìm hiểu khái niệm phương trình một ẩn · Cho HS nhắc lại các kiến thức đã biết về phương trình. H1. Cho ví dụ về phương trình một ẩn, hai ẩn đã biết? H2. Cho ví dụ về phương trình một ẩn có một nghiệm, hai nghiệm, vô số nghiệm, vô nghiệm? · Các nhóm thảo luận, trả lời a) 2x + 3 = 0 –> S = b) x2 – 3x + 2 = 0 –> S = {1,2} c) x2 – x + 2 = 0 –> S = Ỉ d) S=[–1;1] I. Khái niệm phương trình 1. Phương trình một ẩn · Phương trình ẩn x là mệnh đề chứa biến có dạng: f(x) = g(x) (1) trong đó f(x), g(x) là những biểu thức của x. · x0 Ỵ R đgl nghiệm của (1) nếu f(x0) = g(x0) đúng. · Giải (1) là tìm tập nghiệm S của (1). · Nếu (1) vô nghiệm thì S=Ỉ. Hoạt động 2: Tìm hiểu điều kiện xác định của phương trình H1. Tìm điều kiện của các phương trình sau: a) 3 – x2 = b) a) 2 – x > 0 Û x < 2 b) Û 2. Điều kiện của một phương trình Điều kiện xác định của (1) là điều kiện của ẩn x để f(x) và g(x) có nghĩa. Hoạt động 3: Tìm hiểu khái niệm phương trình nhiều ẩn H1. Cho ví dụ về phương trình nhiều ẩn? H2. Chỉ ra một số nghiệm của các phương trình đó? Học sinh trả lời câu hỏi của giáo viên 3. Phương trình nhiều ẩn Dạng f(x,y) = g(x,y), Hoạt động 4: Tìm hiểu khái niệm phương trình chứa tham số H1. Cho ví dụ phương trình chứa tham số? Đ1. a) (m + 1)x – 3 = 0 b) x2 – 2x + m = 0 4. Phương trình chứa tham số SGK Hoạt động 5: Tìm hiểu khái niệm phương trình tương đương H1. Hai pt: và 2x = 6 có tương đương không? H2. Hai phương trình vô nghiệm có tương đương không? Đ1. Tương đương, vì cùng tập nghiệm S = {3} Đ2. Có, vì cùng tập nghiệm II. Phương trình tương đương và phương trình hệ quả 1. Phương trình tương đương Hai phương trình đgl tương đương khi chúng có cùng tập nghiệm Chú ý: Hai phương trình vô nghiệm thì tương đương. Hoạt động 6: Tìm hiểu các phép biến đổi tương đương · Xét các phép biến đổi sau: a) x + = + 1 Û x + – = + 1 – Û x = 1 b) x(x – 3) = 2x Û x – 3 = 2 Û x = 5 H1. Tìm sai lầm trong các phép biến đổi trên? Đ1. a) sai vì ĐKXĐ của pt là x ≠ 1 b) sai vì đã chia 2 vế cho x = 0 2. Phép biến đổi tương đương Định lí: SGK Kí hiệu: Ta dùng kí hiệu Û để chỉ sự tương đương của các phương trình. Hoạt động 7: Tìm hiểu khái niệm phương trình hệ quả · Xét phép biến đổi: = x – 2 (1) Þ 8 – x = (x–2)2 Þ x2 –3x – 4 = 0 (2) (Þ x = –1; x = 4) H1. Các nghiệm của (2) có đều là nghiệm của (1) không? Đ1. x = –1 không là nghiệm của (1) 3. Phương trình hệ quả Nếu mọi nghiệm của pt f(x) = g(x) đều là nghiệm của pt f1(x) =g1(x) thì pt f1(x) =g1(x) đgl pt hệ quả của pt f(x) = g(x). Ta viết f(x)=g(x)Þf1(x)=g1(x) Chú ý: Pt hệ quả có thể thêm nghiệm không phải là nghiệm của pt ban đầu. Ta gọi đó là nghiệm ngoại lai. 4. Củng cố - Điều kiện xác định của phương trình. - Các phép biến đổi tương đương phương trình, các phép biến đổi hệ quả. - Bài tập 1, 2 SGK trang 57. 5. Hướng dẫn về nhà Tìm điều kiện xác định của các phương trình trong bài 3, 4 SGK. Đọc tiếp bài "Đại cương về phương trình" ----------------------------------------------------------------------------- Tổ chuyên môn duyệt: Ngày soạn: 20/10/2010 Tiết 28 LUYỆN TẬP VỀ PHƯƠNG TRÌNH lI. Mục tiêu Kiến thức Củng cố các kiến thức về phương trình đã học. Kĩ năng: Biết giải một số phương trình đơn giản. Nêu được điều kiện xác định của phương trình. Biết biến đổi tương đương phương trình. Thái độ: Rèn luyện tính cẩn thận, chính xác. II. Phương pháp, phương tiện Phương pháp: Đàm thoại, gợi mở nêu vấn đề. Phát huy tính tích cực của học sinh. Phương tiện: Sách giáo khoa, sách giáo viên, sách tham khảo. III. Tiến trình bài dạy 1. Ổn định tổ chức Lớp Tiết Sĩ số Thứ / Ngày Ghi Chú 10N1 10N2 2. Kiểm tra bài cũ Nêu các phép biến đổi tương đương phương trình. 3. Bài mới Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung Gọi học sinh làm bài tập Gọi HS nhận xét bài làm của bạn. Cách giải phương trình chứa ẩn dưới mẫu số? Học sinh thực hiện theo yêu cầu của giáo viên theo các bước: - Tìm TXĐ - Giải PT - KL nghiệm Nhận xét, sửa sai nếu có Học sinh thực hiện Bài 3 SGK Giải các phương trình: Nghiệm x=1 b) Nghiệm x=2 Nghiệm x=3 d) Vô nghiệm. Bài 4 SGK Giải các phương trình Nghiệm x = 0 b) Nghiệm c) Nghiệm x = 5. d) Phương trình vô nghiệm 4. Củng cố - Điều kiện xác định của phương trình - Giải các phương trình sau 5. Hướng dẫn về nhà - LàØm các bài tập tương ứng trong sách bài tập. - Đọc trước bài "Phương trình quy về phương trình bậc nhất, bậc hai" Tổ chuyên môn duyệt: Ngày soạn: 20/10/2010 §2 PHƯƠNG TRÌNH QUI VỀ Tiết 29 PHƯƠNG TRÌNH BẬC NHẤT, BẬC HAI (tiết 1) I. Mục tiêu Kiến thức Củng cố cách giải phương trình bậc nhất, bậc hai một ẩn. Hiểu cách giải và biện luận các phương trình ax + b = 0, ax2 + bx + c = 0. Kĩ năng Giải và biện luận thành thạo các phương trình ax+ b=0, ax2 + bx + c = 0. Thái độ Rèn luyện tính cẩn thận, chính xác. II. Phương pháp, phương tiện Phương pháp: Đàm thoại, gợi mở nêu vấn đề. Phát huy tính tích cực của học sinh. Phương tiện: Sách giáo khoa, sách giáo viên, sách tham khảo. Bảng tóm tắt cách giải và biện luận phương trình bậc nhất, bậc hai. III. Tiến trình bài dạy 1. Ổn định tổ chức Lớp Tiết Sĩ số Thứ / Ngày Ghi Chú 10N1 10N2 2. Kiểm tra bài cũ Thế nào là hai phương trình tương đương? Tập nghiệm và tập xác định của phương trình khác nhau ở điểm nào? 3. Bài mới Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung Hoạt động 1: Ôn tập về phương trình bậc nhất · Hướng dẫn cách giải và biện luận phương trình ax + b = 0 thông qua ví dụ. VD1. Cho pt: m(x – 4) = 5x – 2 (1) a) Giải pt (1) khi m = 1 b) Giải và biện luận pt (1) H1. Gọi 1 HS giải câu a) H2. Biến đổi (1) đưa về dạng ax + b = 0 Xác định a, b? H3. Xét (2) với a ≠ 0; a = 0? · HS theo dõi thực hiện lần lượt các yêu cầu. 1. 4x = – 2 Û x = – Đ2. (m – 5)x + 2 – 4m = 0 (2) a = m – 5; b = 2 – 4m Đ3. m ≠ 5: (2) Û x = m = 5: (2) Û 0x – 18=0 Þ (2) vô nghiệm I. Ôn tập về phương trình bậc nhất, bậc hai 1. Phương trình bậc nhất ax + b = 0 (1) Hệ số Kết luận a ≠ 0 (1) có nghiệm a = 0 b ≠ 0 (1) vô nghiệm b = 0 (1) nghiệm đúng với mọi x · Khi a≠0 pt (1) đgl phương trình bậc nhất một ẩn. Hoạt động 2: Ôn tập về phương trình bậc hai · Hướng dẫn cách giải và biện luận ph.trình ax2 + bx + c = 0 thông qua ví dụ. VD2. Cho pt: x2 – 2mx + m2 – m + 1 = 0 (2) a) Giải (2) khi m = 2 b) Giải và biện luận (2) H1. Gọi 1 HS giải câu a) H2. Tính D? H3. Xét các trường hợp D > 0, D = 0, D < 0? · HS theo dõi thực hiện lần lượt các yêu cầu. Đ1. (2) Û x2 – 4x + 3 = 0 Û x = 1; x = 3 Đ2. D = 4(m – 1) Đ3. m > 1: D > 0 Þ (2) có 2 nghiệm x1,2 = m ± m = 1: D = 0 Þ (2) có nghiệm kép x = m = 1 m < 1: D < 0 Þ (2) vô nghiệm 2. Phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) (2) D = b2 – 4ac Kết luận D > 0 (2) có 2 nghiệm phân biệt x1,2 = D = 0 (2) có nghiệm kép x = – D < 0 (2) vô nghiệm Hoạt động 3: Ôn tập về định lí Viet · Luyện tập vận dụng định lí Viet. VD3. Chứng tỏ pt sau có 2 nghiệm x1, x2 và tính x1 + x2, x1x2 : x2 – 3x + 1 = 0 VD4. Pt 2x2 – 3x – 1 = 0 có 2 nghiệm x1, x2 . Tính x12 + x22 ? Đ. D = 5 > 0 Þ pt có 2 nghiệm phân biệt x1 + x2 = 3, x1x2 = 1 Đ. x1 + x2 = , x1x2 = – x12 + x22 = (x1 + x2)2 –2x1x2 = 3. Định lí Viet Nếu phương trình bậc hai: ax2 + bx + c = 0 (a≠0) có hai nghiệm x1, x2 thì: x1 + x2 = –, x1x2 = Ngược lại, nếu hai số u, v có tổng u + v = S và tích uv = P thì u và v là các nghiệm của phương trình x2 – Sx + P = 0 4. Củng cố · Nhấn mạnh các bước giải và biện luận pt ax + b = 0, pt bậc hai. · Các tính chất về nghiệm số của phương trình bậc hai: – Cách nhẩm nghiệm – Biểu thức đối xứng của các nghiệm – Dấu của nghiệm số 5. Hướng dẫn về nhà Bài 2, 3, 5, 8 SGK. Đọc tiếp bài "Phương trình qui về phương trình bậc nhất, bậc hai" Tổ chuyên môn duyệt: Ngày soạn: 20/10/2010 Tiết 31 §2 PHƯƠNG TRÌNH QUI VỀ PHƯƠNG TRÌNH BẬC NHẤT, BẬC HAI (tiết 2) I. Mục tiêu Kiến thức Hiểu cách giải các pt qui về dạng bậc nhất, bậc hai, pt chứa ẩn ở mẫu, pt có chứa dấu GTTĐ, pt chứa căn đơn giản, pt tích. Kĩ năng Giải thành thạo pt ax+ b=0, pt bậc hai. Giải được các pt qui về bậc nhất, bậc hai. Biết giải pt bậc hai bằng MTBT. Thái độ Rèn luyện tính cẩn thận, chính xác. II. Phương pháp, phương tiện Phương pháp: Đàm thoại, gợi mở nêu vấn đề. Phát huy tính tích cực của học sinh. Phương tiện: Sách giáo khoa, sách giáo viên, sách tham khảo. Tranh vẽ. III. Tiến trình bài dạy 1. Ổn định tổ chức Lớp Tiết Sĩ số Thứ / Ngày Ghi Chú 10N1 10N2 2. Kiểm tra bài cũ Nêu điều kiện xác định của biểu thức chứa biến ở mẫu? Áp dụng: Tìm ĐKXĐ của f(x) = 3. Bài mới Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung Hoạt động 1: Ôn tập phương trình chứa ẩn ở mẫu H1. Nhắc lại định nghĩa GTTĐ ? VD1. Giải phương trình: (2) · Hướng dẫn HS làm theo 2 cách. Từ đó rút ra nhận xét. + Nếu x ≥ 3 thì (2) trở thành: x–3=2x+1Þ x=–4 (loại) + Nếu x<3 thì (2) trở thành: –x+3=2x+1Þ x= (thoả) C2: (2)Þ (x – 3)2 = (2x ... p bài "Phương trình và hệ phương trình bậc nhất nhiều ẩn" Tổ chuyên môn duyệt: Ngày soạn: 25/10/2010 Tiết 37 LUYỆN TẬP VỀ PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT NHIỀU ẨN (tiết 1) I. Mục tiêu Kiến thức Nắm vững khái niệm hệ phương trình bậc nhất ba ẩn và tập nghiệm của chúng. Hiểu rõ phương pháp cộng đại số và phương pháp thế. Kĩ năng Giải được hệ bậc nhất ba ẩn đơn giản. Biết dùng MTBT để giải hệ pt bậc nhất hai, ba ẩn. Thái độ Rèn luyện tính cẩn thận, chính xác. Luyện tư duy linh hoạt thông qua việc biến đổi hệ phương trình. II. Phương pháp, phương tiện Phương pháp: Đàm thoại, gợi mở nêu vấn đề. Phát huy tính tích cực của học sinh. Phương tiện: Sách giáo khoa, sách giáo viên, sách tham khảo. Tranh vẽ. III. Tiến trình bài dạy 1. Ổn định tổ chức Lớp Tiết Sĩ số Thứ / Ngày Ghi Chú 10N1 10N2 2. Kiểm tra bài cũ Giải hệ phương trình sau bằng định thức: 3. Bài mới Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung Hoạt động 1: Tìm hiểu cách giải Hệ phương trình bậc nhất 3 ẩn · GV hướng dẫn tìm nghiệm của hệ phương trình: –> Hệ phương trình trên có dạng tam giác. · (3) Þ z = (2) Þ y = (1) Þ x = II. Hệ phương trình bậc nhất 3 ẩn · Phương trình bậc nhất 3 ẩn: ax + by + cz = d trong đó a2 + b2 + c2 ≠ 0 · Hệ 3 pt bậc nhất 3 ẩn: (4) Mỗi bộ số (x0; y0; z0) nghiệm đúng cả 3 pt của hệ đgl nghiệm của hệ (4). · Phương pháp Gauss: Mọi hệ phương trình bậc nhất 3 ẩn đều biến đổi được về dạng tam giác bằng phương pháp khử dần ẩn số. Hoạt động 2: Luyện tập giải hệ phương trình bậc nhất 3 ẩn · GV hướng dẫn cách vận dụng phương pháp Gauss. · (*) Û Û VD1: Giải hệ phương trình: (*) Hoạt động 3: Luyện tập giải toán bằng cách lập hệ phương trình H1. Nhắc lại các bước giải toán bằng cách lập phương trình ? Đ1. 1) Chọn ẩn, đk của ẩn. 2) Biểu diễn các đại lượng liên quan theo ẩn. 3) Lập pt, hệ pt. 4) Giải pt, hệ pt 5) Đối chiếu đk để chọn nghiệm thích hợp. · x (đ): giá tiền một quả quýt y (đ): giá tiền một quả cam Þ x = 800, y = 1400 VD2: Hai bạn Vân và Lan đến cửa hàng mua trái cây. Bạn Vân mua 10 quả quýt, 7 quả cam với giá tiền 17800 đ. Bạn Lan mua 12 quả quýt, 6 quả cam hết 18000 đ. Hỏi giá tiền mỗi quả quýt và mỗi quả cam là bao nhiêu? Hoạt động 4: Hướng dẫn sử dụng MTBT để giải hệ phương trình · Hướng dẫn HS sử dụng MTBT để giải hệ pt. a) b) VD3: Giải các hệ ph.trình: a) b) 4. Củng cố Tóm tắt nội dung bài 5. Hướng dẫn về nhà Học bài, làm bài tập 3, 4, 5, 6, 7 SGK Tổ chuyên môn duyệt: Ngày soạn: 25/10/2010 Tiết 38 LUYỆN TẬP VỀ PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT NHIỀU ẨN ( tiết 2 ) I. Mục tiêu Kiến thức Củng cố cách giải phương trình, hệ phương trình bậc nhất nhiều ẩn. Kĩ năng Giải thành thạo hệ phương trình bậc nhất hai ẩn. Biết giải hệ phương trình bậc nhất ba ẩn. Vận dụng thành thạo việc giải toán bằng cách lập hệ phương trình. Thái độ Rèn luyện tính cẩn thận, chính xác. Luyện tư duy linh hoạt thông qua việc giải hệ phương trình. II. Phương pháp, phương tiện Phương pháp Đàm thoại, gợi mở nêu vấn đề. Phát huy tính tích cực của học sinh. Phương tiện Sách giáo khoa, sách giáo viên, sách tham khảo. Tranh vẽ. III. Tiến trình bài dạy 1. Ổn định tổ chức Lớp Tiết Sĩ số Thứ / Ngày Ghi Chú 10N1 10N2 2. Kiểm tra bài cũ Kết hợp trong bài 3. Bài mới Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung Hoạt động 1: Luyện kỹ năng giải hệ phương trình bậc nhất 2 ẩn H1. Nên dùng phương pháp nào để giải? H2. Nên thực hiện phép biến đổi nào? · Hướng dẫn thêm phương pháp định thức. Đ1. Có thể dùng phương pháp thế hoặc cộng đại số. a) b) Đ2. c) Qui đồng, khử mẫu d) Nhân 2 vế với 10 (2; 0,5) 1. Giải các phương trình: a) b) c) d) Hoạt động 2: Luyện kỹ năng giải hệ phương trình bậc nhất 3 ẩn · Hướng dẫn HS vận dụng phương pháp Gauss. (Cho HS nhận xét và tự rút ra cách biến đổi thích hợp) a) b) 2. Giải các phương trình sau: a) b) Hoạt động 3: Luyện kỹ năng giải toán bằng cách lập hệ phương trình H1. Nêu các bước giải toán bằng cách lập hệ phương trình? Đ1. 3. Gọi x là số áo do dây chuyền thứ nhất may được. y là số áo do dây chuyền thứ hai may được. ĐK: x, y nguyên dương Ta có hệ phương trình: Û 4. Gọi x (ngàn đồng) là giá bán một áo. y (ngàn đồng) là giá bán một quần. z (ngàn đồng) là giá bán một váy. ĐK: x, y, z > 0 Ta có hệ phương trình: 3. Có hai dây chuyền may áo sơ mi. Ngày thứ nhất cả hai dây chuyền may được 930 áo. Ngày thứ hai do dây chuyền thứ nhất tăng năng suất 18%, dây chuyền thứ hai tăng năng suất 15% nên cả hai dây chuyền may được 1083 áo. Hỏi trong ngày thứ nhất mỗi dây chuyền may được bao nhiêu áo sơ mi? 4. Một cửa hàng bán áo sơ mi, quần âu nam và váy nữ. Ngày thứ nhất bán được 12 áo, 21 quần và 18 váy, doanh thu là 5349000 đồng. Ngày thứ hai bán được 16 áo, 24 quần và 12 váy, doanh thu là 5600000 đồng. Ngày thứ ba bán được 24 áo, 15 quần và 12 váy, doanh thu là 5259000 đồng. Hỏi giá bán mỗi áo, mỗi quần và nỗi váy là bao nhiêu? 4. Củng cố · Nhấn mạnh các cách giải hệ phương trình bậc nhất hai ẩn, bậc nhất ba ẩn 5. Hướng dẫn về nhà · Sử dụng MTBT để giải các hệ phương trình. Tổ chuyên môn duyệt: THỰC HÀNH GIẢI TOÁN TRÊN MÁY TÍNH BỎ TÚI I. Mục tiêu Kiến thức Củng cố cách giải phương trình, hệ phương trình bậc nhất nhiều ẩn. Kĩ năng Sử dụng MTBT thành thạo để giải hệ phương trình bậc nhất 2 ẩn. Biết sử dụng MTBT để giải hệ phương trình bậc nhất 3 ẩn. Thái độ Rèn luyện tính cẩn thận, chính xác. II. Phương pháp, phương tiện Phương pháp: Đàm thoại, gợi mở nêu vấn đề. Phát huy tính tích cực của học sinh. Phương tiện: Sách giáo khoa, sách giáo viên, sách tham khảo. Tranh vẽ. III. Tiến trình bài dạy 1. Ổn định tổ chức Lớp Tiết Sĩ số Thứ / Ngày Ghi Chú 10N1 10N2 2. Kiểm tra bài cũ. Kết hợp trong bài. 3. Bài mới Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung Hoạt động 1: Sử dụng MTBT giải hệ phương trình bậc nhất 2 ẩn · Chia nhóm sử dụng MTBT để giải hệ phương trình bậc nhất hai ẩn. · Cho 4 HS giải bằng tay để đối chiếu. a) b) c) d) 1. Giải các phương trình: a) b) c) d) Hoạt động 2: Sử dụng MTBT giải hệ phương trình bậc nhất 3 ẩn · Chia nhóm sử dụng MTBT để giải hệ phương trình bậc nhất ba ẩn. · Cho 2 HS giải bằng các phương pháp khác để đối chiếu kết quả. a) b) 2. Giải các phương trình sau: a) b) Hoạt động 3: Luyện kỹ năng sử dụng MTBT để giải hệ phương trình · Cho HS sử dụng MTBT để giải và báo kết quả. a) b) c) d) 3. Giải các hệ phương trình: a) b) c) d) 4. Củng cố · Nhấn mạnh: – Khi sử dụng MTBT để giải hệ phương trình, thường chỉ cho nghiệm gần đúng. – Chú ý thứ tự các hệ số x –> y –> z 5. Hướng dẫn về nhà Lập đề cương ôn tập chương III. Làm bài tập ôn chương III. Tổ chuyên môn duyệt: Tiết 40 Ngày soạn: 25/01/2010 ÔN TẬP CHƯƠNG III I. Mục tiêu Kiến thức Củng cố các khái niệm đkxđ, pt tương đương, pt hệ quả, hệ hai pt bậc nhất hai ẩn. Nắm vững cách giải phương trình qui về phương trình bậc nhất, bậc hai. Nắm được cách giải hệ pt bậc nhất hai ẩn. Kĩ năng Giải thành thạo phương trình qui về phương trình bậc nhất, bậc hai. Biết vận dụng định lí Viet để giải toán. Giải thành thạo hệ phương trình bậc nhất hai ẩn. Biết giải hệ pt bậc nhất ba ẩn bằng pp Gause. Thái độ Rèn luyện tính cẩn thận, chính xác. Luyện tư duy linh hoạt thông qua việc biến đổi phương trình. II. Phương pháp, phương tiện Phương pháp Đàm thoại, gợi mở nêu vấn đề. Phát huy tính tích cực của học sinh. Phương tiện Sách giáo khoa, sách giáo viên, sách tham khảo. Tranh vẽ. III. Tiến trình bài dạy 1. Ổn định tổ chức Lớp Tiết Sĩ số Thứ / Ngày Ghi Chú 10N1 10N2 2. Kiểm tra bài cũ Kết hợp trong bài 3. Bài mới Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung Hoạt động 1: Củng cố cách tìm đkxđ, xét pt tương đương H1. Nêu ĐKXĐ của các pt. Từ đó thực hiện các phép biến đổi phương trình? Đ1. a) ĐKXĐ: x ≥ 5 Tập nghiệm S = {6} b) ĐKXĐ: x = 1 Tập nghiệm S = Ỉ c) ĐKXĐ: x > 2 Tập nghiệm S = {2} d) ĐKXĐ: x Ỵ Ỉ Tập nghiệm S = Ỉ 1. Giải các phương trình sau: a) b) c) d) 3 + = 4x2 – x + Hoạt động 2: Luyện kỹ năng giải pt qui về pt bậc nhất, bậc hai H1. Nêu cách biến đổi? Cần chú ý các điều kiện gì? Đ1. a) Qui đồng mẫu. ĐK: 2x – 1 ≠ 0 –> S = b) Bình phương 2 vế. ĐK: x – 1 ≥ 0 –> S = c) Dùng định nghĩa GTTĐ. –> S = {2, 3} d) S = 2. Giải các phương trình sau: a) b) = x– 1 c) = 3 – 2x d) Hoạt động 3: Luyện kỹ năng giải hệ pt bậc nhất hai ẩn, ba ẩn H1. Nêu cách giải? · Cho mỗi nhóm giải 1 hệ pt Đ1. a) b) c) d) 3. Giải các hệ phương trình: a) b) c) d) Hoạt động 4: Luyện kỹ năng giải toán bằng cách lập hệ phương trình H1. Nêu các bước giải? Đ1. Gọi t1 (giờ) là thời gian người thứ nhất sơn xong bức tường. t2 (giờ) là thời gian người thứ hai sơn xong bức tường. ĐK: t1, t2 > 0 Û 4. Hai công nhân cùng sơn một bức tường. Sau khi người thứ nhất làm được 7 giờ và người thứ hai làm được 4 giờ thì họ sơn được bức tường. Sau đó họ cùng làm việc với nhau trương 4 giờ nữa thì chỉ còn lại bức tường chưa sơn. Hỏi nếu mỗi người làm riêng thì sau bao nhiêu giờ mỗi người mới sơn xong bức tường? 4. Củng cố · Nhấn mạnh: – Cách giải các dạng toán. – Cách xét các điều kiện khi thực hiện các phép biến đổi phương trình 5. Hướng dẫn về nhà Làm các bài tập còn lại. Đọc trước bài "Bất đẳng thức" Tổ chuyên môn duyệt: Tiết 41 KIỂM TRA CHƯƠNG III I Câu hỏi TNKQ Câu 1: Hệ pt: cĩ nghiệm là A. (6;1) B. (6;-1) C. (-6;1) D. (-6;-1) Câu 2: Hệ pt: cĩ nghiệm là A. (17;4) B. (-17;4) C. (-17;-4) D. (17;-4) Câu 3: Phương trình: cĩ tạp nghiệm là A. {0;3} B. {1;3} C. {1} D. {3} Câu 4: Phương trình: cĩ nghiệm với mọi m A. Đúng B. Sai Câu 5: Phương trình cĩ hai nghiệm phân biệt với mọi m A. Đúng B. Sai II Tự luận
Tài liệu đính kèm: