Giáo án 12 môn Giải tích - Chương 1: Ứng dụng của đạo hàm để khảo sát và vẽ đồ thị của hàm số

Giáo án 12 môn Giải tích - Chương 1: Ứng dụng của đạo hàm để khảo sát và vẽ đồ thị của hàm số

Mục tiêu:

 * Về kiến thức: Ôn tập chương 1

 * Về kĩ năng:

- Cách xét tính đơn điệu của hàm số, GTLN & GTNN, tiệm cận của hsố.

- Nắm được các dạng của đồ thị hàm số bậc ba.

- Tâm đối xứng của đồ thị hàm số bậc ba, bậc nhất trên bậc nhất

- Trục đối xứng của hs bậc 4.

- Thực hiện thành thạo các bước khảo sát hàm số bậc ba, bậc 4, bậc nhất trên bậc nhất.

- Vẽ đồ thị hàm số bậc ba, bậc 4, bậc nhất trên bậc nhất đúng, chính xác và đẹp.

- Biện luận theo m số nghiệm của pt, viết pttt với (C).

 * Về tư duy, thái độ:

- Thái độ nghiêm túc, cẩn thận

- Tính logic , chính xác

- Tích cực khám phá và lĩnh hội tri thức mới

 

doc 4 trang Người đăng haha99 Lượt xem 1079Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án 12 môn Giải tích - Chương 1: Ứng dụng của đạo hàm để khảo sát và vẽ đồ thị của hàm số", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Chương 1. ỨNG DỤNG CỦA ĐẠO HÀM
ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ
-----***-----
ÔN TẬP CHƯƠNG 1
Tiết 20, 21 ; Tuần 7
I. Mục tiêu:
 * Về kiến thức: Ôn tập chương 1
 * Về kĩ năng:
- Cách xét tính đơn điệu của hàm số, GTLN & GTNN, tiệm cận của hsố.
- Nắm được các dạng của đồ thị hàm số bậc ba.
- Tâm đối xứng của đồ thị hàm số bậc ba, bậc nhất trên bậc nhất
- Trục đối xứng của hs bậc 4.
- Thực hiện thành thạo các bước khảo sát hàm số bậc ba, bậc 4, bậc nhất trên bậc nhất.
- Vẽ đồ thị hàm số bậc ba, bậc 4, bậc nhất trên bậc nhất đúng, chính xác và đẹp.
- Biện luận theo m số nghiệm của pt, viết pttt với (C).
 * Về tư duy, thái độ: 
- Thái độ nghiêm túc, cẩn thận
- Tính logic , chính xác
- Tích cực khám phá và lĩnh hội tri thức mới
II. Chuẩn bị:
-Giáo viên: Giáo án, thước kẻ,bảng phụ, phiếu học tập, đèn chiếu (nếu có).
-Học sinh: Nắm kiến thức bài cũ, nghiên cứu bài tâp, đồ dùng học tập.
-Phương pháp: đàm thoại, gợi mở, thuyết trình, hoạt động nhóm.
III.Tiến trình bài học:
Ổn định lớp 
Kiểm tra bài cũ.
Bài mới
Hoạt động của giáo viên
Hoạt động của học sinh
Nội dung
Tiết 20 HĐ1. ôn lại cách xét tính ĐB, NB, tìm GTLN, GTNN, tiệm cận của hàm số.
-Gọi hs nhắc lại cách giải ừng dạng?
-Gọi Hs lên giải từng bài.
-Gọi HS nhận xét.
-Đánh giá, cho điểm.
-Hsinh trả lời.
-Hs giải.
-HS nhận xét.
-Hs ghi nhận.
Bài 1. Xét tính đồng biến, nghịch biến của các hàm số 
a/ y =– 2+ 3;
b/ y = 2– 6x + 2 ; c/ 
Bài 2.Tìm GTLN, GTNN của hàm số y =– 3– 9x + 35 /[–4; 4].
Bài 3.Tìm đường tiệm cận đứng, tiệm cận ngang của đồ thị hàm số: 
a/ y = ; b/ y = 
 HĐ2. Giải bt 6 sgk/45.
Bài tập 6/45
a) Khảo sát sự biến thiên và vẽ đthị (C) hs y = f(x) = –+ 3+ 9x + 2
b) Giải bất phương trình: f’(x-1) > 0
c) Viết Pttt của đồ thị (C) tại điểm có hđộ ,biết rằng f’’(x0) = – 6.
Hướng dẫn: ( học sinh giải)
Khảo sát sự biến thiên và vẽ đồ thị hàm số
= –+ 3+ 9x + 2.
Tập xác định: D = R
‚Sự biến thiên:
Ta có: = –3+ 6x + 9, = 0 Û x = –1, x = 3
 Hàm số đồng biến trên khoảng (–1; 3).
 Hs nghịch biến trên các khoảng (–¥; –1), (3; +¥).
Cực trị:
Hàm số đạt cực đại tại điểm x = 3, = 29
Hàm số đạt cực tiểu tại điểm x = –1, = –3
Giới hạn: = +¥, = –¥
Bảng biến thiên:
ƒĐồ thị:
Điểm uốn: = –6x + 6, = 0 Û x = 1 Þ I(1; 13) điểm uốn là tâm đối xứng.
Ta có = –3+ 6x + 9 
 Þ = = –3+ 12x
 Vậy> 0 Û –3+ 12x > 0 Û 0 < x < 4.
= –6x + 6, = –6 Û –6 + 6 = –6 Û = 2. Với = 9, ¦(2) = 24. 
Phương trình tiếp tuyến tại = 2 là y = 9(x – 2) + 24 Þ y = 9x + 6.
Hoạt động 3. Giải bài tập 7 trang 46
 a) Khảo sát sự biến thiên và vẽ đồ thị (C) hàm số y = + 3+ 1
b) Dựa vào đồ thị (C), biện luận số nghiệm phương trình theo m: + 3+ 1 = m/2
c) Viết phương trình đường thẳng đi qua điểm cực đại và điểm cực tiểu của đồ thị (C).
Hướng dẫn: (học sinh giải)
a/ Khảo sát sự biến thiên và vẽ đồ thị (C) hàm số y = + 3+ 1.
Tập xác định: D = R
‚Sự biến thiên:
Ta có: = 3+ 6x, = 0 Û x = 0, x = –2
 Hàm số đồng biến trên các khoảng (–¥; –2), (0; +¥)
 Hàm số nghịch biến trên khoảng (–2; 0)
Cực trị: 
Hàm số đạt cực đại tại điểm x = –2, = 5
Hàm số đạt cực tiểu tại điểm x = 0, = 1
Giới hạn: = –¥, = +¥
Bảng biến thiên:
ƒĐồ thị:
= 6x + 6, = 0 Û x = –1 Þ Điểm uốn I(–1; 3) đồng thời là tâm đối xứng của đồ thị hàm số.
Giao điểm của đồ thị với trục Oy là (0 ; 1)
b/ Số nghiệm phương trình + 3+ 1 = là số giao điểm của đường cong (C) với đường thẳng y = 
Nếu 5 Û m 10: phương trình có 1 nghiệm
 = 1 hoặc = 5 Û m = 2 hoặc m = 10: phương trình có 2 nghiệm
 1< < 5 Û 2 < m < 10: phương trình có 3 nghiệm.
c/ Điểm cực đại A(–2; 5), điểm cực tiểu B(0 ; 1), đường thẳng AB : y = –2x + 1
 Tiết 21 Hoạt động 1. Giải bài tập 8 trang 46
Cho hàm số = – 3m+ 3(2m – 1)x + 1 (m là tham số)
a/ Xác định m để hàm số đồng biến trên tập xác định.
b/ Với giá trị nào của m, hàm số có một cực đại và một cực tiểu ?
c/ Xác định m để > 6x
Hướng dẫn: 
 Tập xác định: D = R
Ta có: = 3– 6mx + 3(2m – 1) = 3(– 2mx + 2m – 1)
Để hàm số đồng biến trên tập xác định khi ³ 0 "xÎR Û – 2mx + 2m – 1 ³ 0 "m 
Û £ 0 Û m = 1.
Để hàm số có một cực đại và một cực tiểu khi phương trình – 2mx + 2m – 1= 0 có hai nghiệm phân biệt 
 Û = > 0 Û m ¹ 1
= 3– 6mx + 3(2m – 1), = 6x – 6m
> 6x Û 6x – 6m > 6x Û m < 0.
Hoạt động 2. Giải bài tập 10 trang 46
Bài tập 10. Cho hàm số y = –+ 2m– 2m + 1 (m là tham số) có đồ thị là 
a/ Biện luận theo m số cực trị của hàm số.
b/ Với giá trị nào của m thì cắt trục hoành ?
c/ Xác định m để có cực đại, cực tiểu.
Hướng dẫn: 
y = –+ 2m– 2m + 1, = –4+ 4mx = –4x(– m)
m £ 0: Hàm số có 1 cực đại tại điểm x = 0
m > 0: Hàm số có 2 cực đại tại điểm x = ± và 1 cực tiểu tại đểm x = 0
Phương trình –+ 2m– 2m + 1 = 0 luôn có nghiệm x = ±1 "m. Do đó luôn cắt trục hoành "m
m > 0 thìcó cực đại và cực tiểu.
Hoạt động 3. Giải bài tập 11 trang 46
a) Khảo sát sự biến thiên và vẽ đồ thị (C) hàm số y = .
b) Chứng minh rằng với mọi giá trị của m, đường thẳng y = 2x + m luôn cắt (C) tại hai điểm phân biệt M và N.
c) Xác định m sao cho độ dài MN là nhỏ nhất.
d) Tiếp tuyến tại một điểm S bất kỳ của (C) cắt hai tiệm cận của (C) tại P và Q. Chứng minh rằng S là trung điểm của PQ.
Hướng dẫn:
b/ Hoành độ giao điểm của đồ thị (C) và đường thẳng a/
 y = 2x + m là nghiệm phương trình = 2x + m 
 Û = 0.(*) 
Phương trình = = 0 
có D = > 0 "m và (–1) ¹ 0 nên phương trình (*) luôn có 2 nghiệm khác –1 "m hay với mọi giá trị của m, đường thẳng y = 2x + m luôn cắt (C) tại hai điểm phân biệt M và N
c/Gọi , là hoành độ của điểm N, M. 
Theo Víet:+= –; .= và = = = = = ³ = 20
Do đó MN ³ . Dấu bằng xảy ra khi m = 3 và MN = .
* Củng cố và dặn dò:
Về nhà học bài, xem lại bài tâp chuẩn bị kiểm tra 1 tiết.

Tài liệu đính kèm:

  • docon tap chuong 1.doc