1. Giai thừa : n! = 1.2.n
0! = 1
n! /(n – k)! = (n – k + 1).(n – k + 2) . n
2. Nguyên tắc cộng : Trường hợp 1 có m cách chọn, trường hợp 2 có n
cách chọn; mỗi cách chọn đều thuộc đúng một trường hợp. Khi đó,
tổng số cách chọn là : m + n.
3. Nguyên tắc nhân : Hiện tượng 1 có m cách chọn, mỗi cách chọn này
lại có n cách chọn hiện tượng 2. Khi đó, tổng số cách chọn liên tiếp
hai hiện tượng là : m x n.
giải đề thi tuyển sinh đại học môn toán năm 2004 – 2008 3 GIẢI TÍCH TỔ HỢP 1. Giai thừa : n! = 1.2...n 0! = 1 n! /(n – k)! = (n – k + 1).(n – k + 2) ... n 2. Nguyên tắc cộng : Trường hợp 1 có m cách chọn, trường hợp 2 có n cách chọn; mỗi cách chọn đều thuộc đúng một trường hợp. Khi đó, tổng số cách chọn là : m + n. 3. Nguyên tắc nhân : Hiện tượng 1 có m cách chọn, mỗi cách chọn này lại có n cách chọn hiện tượng 2. Khi đó, tổng số cách chọn liên tiếp hai hiện tượng là : m x n. 4. Hoán vị : Có n vật khác nhau, xếp vào n chỗ khác nhau. Số cách xếp : Pn = n !. 5. Tổ hợp : Có n vật khác nhau, chọn ra k vật. Số cách chọn : )!kn(!k !nCkn −= 6. Chỉnh hợp : Có n vật khác nhau. Chọn ra k vật, xếp vào k chỗ khác nhau số cách : = =− k k n n n! k n kA , A C .P(n k)! Chỉnh hợp = tổ hợp rồi hoán vị 7. Tam giác Pascal : 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 44 3 4 2 4 1 4 0 4 3 3 2 3 1 3 0 3 2 2 1 2 0 2 1 1 0 1 0 0 CCCCC CCCC CCC CC C Tính chất : k 1n k n 1k n kn n k n n n 0 n CCC CC,1CC +− − =+ === 8. Nhị thức Newton : * n0nn 11n1 n 0n0 n n baC...baCbaC)ba( +++=+ − a = b = 1 : ... 0 1 nn n nC C ... C 2 n+ + + = giải đề thi tuyển sinh đại học môn toán năm 2004 – 2008 4 Với a, b ∈ {±1, ±2, ...}, ta chứng minh được nhiều đẳng thức chứa : nn 1 n 0 n C,...,C,C * nnn 1n1 n n0 n n xC...xaCaC)xa( +++=+ − Ta chứng minh được nhiều đẳng thức chứa bằng cách : n n 1 n 0 n C,...,C,C - Đạo hàm 1 lần, 2 lần, cho x = ±1, ±2, ... a = ±1, ±2, ... - Nhân với xk , đạo hàm 1 lần, 2 lần, cho x = ±1, ±2, ... , a = ±1, ±2, ... - Cho a = ±1, ±2, ..., hay ∫∫ ±± 2 0 1 0 ...hay β α ∫ Chú ý : * (a + b)n : a, b chứa x. Tìm số hạng độc lập với x : k n k k mnC a b Kx − = Giải pt : m = 0, ta được k. * (a + b)n : a, b chứa căn . Tìm số hạng hữu tỷ. m r k n k k p q nC a b Kc d − = Giải hệ pt : ⎩⎨ ⎧ ∈ ∈ Zq/r Zp/m , tìm được k * Giải pt , bpt chứa : đặt điều kiện k, n ∈ N...C,A knkn * ..., k ≤ n. Cần biết đơn giản các giai thừa, qui đồng mẫu số, đặt thừa số chung. * Cần phân biệt : qui tắc cộng và qui tắc nhân; hoán vị (xếp, không bốc), tổ hợp (bốc, không xếp), chỉnh hợp (bốc rồi xếp). * Áp dụng sơ đồ nhánh để chia trường hợp , tránh trùng lắp hoặc thiếu trường hợp. * Với bài toán tìm số cách chọn thỏa tính chất p mà khi chia trường hợp, ta thấy số cách chọn không thỏa tính chất p ít trường hợp hơn, ta làm như sau : số cách chọn thỏa p. = số cách chọn tùy ý - số cách chọn không thỏa p. Cần viết mệnh đề phủ định p thật chính xác. giải đề thi tuyển sinh đại học môn toán năm 2004 – 2008 5 * Vé số, số biên lai, bảng số xe ... : chữ số 0 có thể đứng đầu (tính từ trái sang phải). * Dấu hiệu chia hết : - Cho 2 : tận cùng là 0, 2, 4, 6, 8. - Cho 4 : tận cùng là 00 hay 2 chữ số cuối hợp thành số chia hết cho 4. - Cho 8 : tận cùng là 000 hay 3 chữ số cuối hợp thành số chia hết cho 8. - Cho 3 : tổng các chữ số chia hết cho 3. - Cho 9 : tổng các chữ số chia hết cho 9. - Cho 5 : tận cùng là 0 hay 5. - Cho 6 : chia hết cho 2 và 3. - Cho 25 : tận cùng là 00, 25, 50, 75. ĐẠI SỐ 1. Chuyển vế : a + b = c ⇔ a = c – b; ab = c ⇔ a/b = c ⇔ ; ⎢⎢⎣ ⎡ ⎩⎨ ⎧ = ≠ == b/ca 0b 0cb ⎩⎨ ⎧ ≠ = 0b bca 1n21n2 baba ++ =⇔= 2n 2n 2n 2n b aa b a b, a b a 0 ⎧ == ⇔ = ± = ⇔ ⎨ ≥⎩ ⎩⎨ ⎧ α=⇔=≥ ±=⇔= α abbloga,0a ab ba ⎩⎨ ⎧ > < ⎩⎨ ⎧ < > >= ⇔<−<⇔<+ b/ca 0b b/ca 0b 0c,0b cab;bcacba 2. Giao nghiệm : ⎩⎨ ⎧ <⇔< < ⎩⎨ ⎧ >⇔> > }b,amin{x bx ax ;}b,amax{x bx ax giải đề thi tuyển sinh đại học môn toán năm 2004 – 2008 6 ⎧⎨Γ⎧ > ∨< < < ⎧ ⎩⇔ ⇔⎨ ⎨< Γ≥ ⎧⎩⎩ ⎨Γ⎩ p x a p qa x b(nếua b) ; x b VN (nếua b) q Nhiều dấu v : vẽ trục để giao nghiệm. 3. Công thức cần nhớ : a. : chỉ được bình phương nếu 2 vế không âm. Làm mất phải đặt điều kiện. ⎩⎨ ⎧ ≤≤ ≥ ⎩⎨ ⎧ ⇔≤= ≥⇔= 22 ba0 0b ba, ba 0b ba ⎩⎨ ⎧ ≥ ≥ ⎩⎨ ⎧ ∨≥ <⇔≥ 2ba 0b 0a 0b ba )0b,anếu(b.a )0b,anếu(b.aab <−− ≥= b. . : phá . bằng cách bình phương : 22 aa = hay bằng định nghĩa : )0anếu(a )0anếu(a a <− ≥= baba; ba 0b ba ±=⇔=⎩⎨ ⎧ ±= ≥⇔= a b b a b≤ ⇔ − ≤ ≤ b 0 a b b 0hay a b a b ≥⎧≥ ⇔ < ⎨ ≤ − ∨ ≥⎩ 0baba 22 ≤−⇔≤ c. Mũ : .1a0nếuy,1anếuy,0y,Rx,ay x ↑>∈= giải đề thi tuyển sinh đại học môn toán năm 2004 – 2008 7 0 m / n m m n m nn m n m n m n m .n n n n n n n m n a 1 ; a 1/ a ; a .a a a / a a ; (a ) a ; a / b (a/ b) a .b (ab) ; a a (m n,0 a 1) a = 1 − + − = = = = = = = = ⇔ = < ≠ ∨ α=α ><⇔< alognm a, )1a0nếu(nm )1anếu(nm aa d. log : y = logax , x > 0 , 0 < a ≠ 1, y ∈ R y↑ nếu a > 1, y↓ nếu 0 < a < 1, α = logaaα loga(MN) = logaM + logaN (⇐ ) loga(M/N) = logaM – logaN (⇐ ) 2aaa 2 a MlogMlog2,Mlog2Mlog == (⇒) logaM3 = 3logaM, logac = logab.logbc logbc = logac/logab, Mlog 1Mlog aa α=α loga(1/M) = – logaM, logaM = logaN ⇔ M = N a a 0 M N (nếua 1) log M log N M N 0(nếu0 a 1 > < < ) Khi làm toán log, nếu miền xác định nới rộng : dùng điều kiện chặn lại, tránh dùng công thức làm thu hẹp miền xác định. Mất log phải có điều kiện. 4. Đổi biến : a. Đơn giản : 2 x a t ax b R, t x 0, t x 0,t x 0, t a 0,t log x R = + ∈ = ≥ = ≥ = ≥ = > = ∈ b. Hàm số : t = f(x) dùng BBT để tìm điều kiện của t. Nếu x có thêm điều kiện, cho vào miền xác định của f. c. Lượng giác : t = sinx, cosx, tgx, cotgx. Dùng phép chiếu lượng giác để tìm điều kiện của t. d. Hàm số hợp : từng bước làm theo các cách trên. 5. Xét dấu : a. Đa thức hay phân thức hữu tỷ, dấu A/B giống dấu A.B; bên phải cùng dấu hệ số bậc cao nhất; qua nghiệm đơn (bội lẻ) : đổi dấu; qua nghiệm kép (bội chẵn) : không đổi dấu. b. Biểu thức f(x) vô tỷ : giải f(x) 0. giải đề thi tuyển sinh đại học môn toán năm 2004 – 2008 8 c. Biểu thức f(x) vô tỷ mà cách b không làm được : xét tính liên tục và đơn điệu của f, nhẩm 1 nghiệm của pt f(x) = 0, phác họa đồ thị của f , suy ra dấu của f. 6. So sánh nghiệm phương trình bậc 2 với α : f(x) = ax2 + bx + c = 0 (a ≠ 0) * S = x1 + x2 = – b/a ; P = x1x2 = c/a Dùng S, P để tính các biểu thức đối xứng nghiệm. Với đẳng thức g(x1,x2) = 0 không đối xứng, giải hệ pt : ⎪⎩ ⎪⎨ ⎧ = += = 21 21 x.xP xxS 0g Biết S, P thỏa S2 – 4P ≥ 0, tìm x1, x2 từ pt : X2 – SX + P = 0 * Dùng Δ, S, P để so sánh nghiệm với 0 : x1 < 0 < x2 ⇔ P < 0, 0 < x1 < x2 ⇔ ⎪⎩ ⎪⎨ ⎧ > > >Δ 0S 0P 0 x1 < x2 < 0 ⇔ ⎪⎩ ⎪⎨ ⎧ < > >Δ 0S 0P 0 * Dùng Δ, af(α), S/2 để so sánh nghiệm với α : x1 < α < x2 ⇔ af(α) < 0 α < x1 < x2 ⇔ ; x ⎪⎩ ⎪⎨ ⎧ <α >α >Δ 2/S 0)(f.a 0 1 < x2 < α ⇔ ⎪⎩ ⎪⎨ ⎧ α< >α >Δ 2/S 0)(f.a 0 α < x1 < β < x2 ⇔ a.f ( ) 0 a.f ( ) 0 β ⎨⎪α < β⎩ ; x1 < α < x2 < β ⇔ ⎪⎩ ⎪⎨ ⎧ β<α >β <α 0)(f.a 0)(f.a 7. Phương trình bậc 3 : giải đề thi tuyển sinh đại học môn toán năm 2004 – 2008 9 a. Viête : ax3 + bx2 + cx + d = 0 x1 + x2 + x3 = – b/a , x1x2 + x1x3 + x2x3 = c/a , x1.x2.x3 = – d/a Biết x1 + x2 + x3 = A , x1x2 + x1x3 + x2x3 = B , x1.x2.x3 = C thì x1, x2, x3 là 3 nghiệm phương trình : x3 – Ax2 + Bx – C = 0 b. Số nghiệm phương trình bậc 3 : • x = α ∨ f(x) = ax2 + bx + c = 0 (a ≠ 0) : 3 nghiệm phân biệt ⇔ ⎩⎨ ⎧ ≠α >Δ 0)(f 0 2 nghiệm phân biệt ⇔ ⎩⎨ ⎧ ≠α =Δ∨⎩⎨ ⎧ =α >Δ 0)(f 0 0)(f 0 1 nghiệm ⇔ ( ) Δ⎧Δ ⎨ α⎩ = 0 < 0 hay f = 0 • Phương trình bậc 3 không nhẩm được 1 nghiệm, m tách được sang 1 vế : dùng sự tương giao giữa (C) : y = f(x) và (d) : y = m. • Phương trình bậc 3 không nhẩm được 1 nghiệm, m không tách được sang 1 vế : dùng sự tương giao giữa (Cm) : y = f(x, m) và (Ox) : y = 0 3 nghiệm ⇔ ⎩⎨ ⎧ < >Δ 0y.y 0 CTCĐ 'y 2 nghiệm ⇔ ⎩⎨ ⎧ = >Δ 0y.y 0 CTCĐ 'y 1 nghiệm ⇔ Δy' ≤ 0 ∨ ⎩⎨ ⎧ > >Δ 0y.y 0 CTCĐ 'y c. Phương trình bậc 3 có 3 nghiệm lập thành CSC : ⇔ ⎩⎨ ⎧ = >Δ 0y 0 uốn 'y d. So sánh nghiệm với α : • x = xo ∨ f(x) = ax2 + bx + c = 0 (a ≠ 0) : so sánh nghiệm phương trình bậc 2 f(x) với α. giải đề thi tuyển sinh đại học môn toán năm 2004 – 2008 10 • Không nhẩm được 1 nghiệm, m tách được sang 1 vế : dùng sự tương giao của f(x) = y: (C) và y = m: (d) , đưa α vào BBT. • Không nhẩm được 1 nghiệm, m không tách được sang 1 vế : dùng sự tương giao của (Cm) : y = ax3 + bx2 + cx + d (có m) ,(a > 0) và (Ox) α < x1 < x2 < x3 ⇔ y ' CĐ CT CĐ 0 y .y 0 y( ) 0 x Δ >⎧⎪ <⎪⎨ α <⎪⎪α <⎩ x1 < α < x2 < x3 ⇔ ⎪⎪⎩ ⎪⎪⎨ ⎧ <α >α < >Δ CT CTCĐ 'y x 0)(y 0y.y 0 x1 < x2 < α < x3 ⇔ ⎪⎪⎩ ⎪⎪⎨ ⎧ α< <α < >Δ CĐ CTCĐ 'y x 0)(y 0y.y 0 x1 < x2 < x3 < α ⇔ y ' CĐ CT CT 0 y .y 0 y( ) 0 x Δ >⎧⎪ ⎪⎪ < α⎩ 8. Phương trình bậc 2 có điều kiện : f(x) = ax2 + bx + c = 0 (a ≠ 0), x ≠ α 2 nghiệm ⇔ ⎩⎨ ⎧ >Δ ≠α 0 0)(f , 1 nghiệm ⇔ ⎩⎨ ⎧ ≠α =Δ ⎩⎨ ⎧ =α >Δ 0)(f 0 0)(f 0 α x1 αx1 αx1 x x αx1 giải đề thi tuyển sinh đại học môn toán năm 2004 – 2008 11 Vô nghiệm ⇔ Δ < 0 ∨ ⎩⎨ ⎧ =α =Δ 0)(f 0 Nếu a có tham số, xét thêm a = 0 với các trường hợp 1 nghiệm, VN. 9. Phương trình bậc 4 : a. Trùng phương : ax4 + bx2 + c = 0 (a ≠ 0) ⇔ ⎩⎨ ⎧ = ≥= 0)t(f 0xt 2 t = x2 ⇔ x = ± t 4 nghiệm ⇔ ; 3 nghiệm ⇔ ⎪⎩ ⎪⎨ ⎧ > > >Δ 0S 0P 0 ⎩⎨ ⎧ > = 0S 0P 2 nghiệm ⇔ ⎩⎨ ⎧ > =Δ < 02/S 0 0P ;1 nghiệm ⇔ ⎩⎨ ⎧ = =Δ ⎩⎨ ⎧ < = 02/S 0 0S 0P VN ⇔ Δ < 0 ∨ ⇔ Δ < 0 ∨ ⎪⎩ ⎪⎨ ⎧ < > ≥Δ 0S 0P 0 0 0 P S ⎧⎪ >⎨⎪ <⎩ 4 nghiệm CSC ⇔ ⎩⎨ ⎧ = << 12 21 t3t tt0 Giải hệ pt : ⎪⎩ ⎪⎨ ⎧ = += = 21 21 12 t.tP ttS t9t b. ax4 + bx3 + cx2 + bx + a = 0. Đặt t = x + x 1 . Tìm đk của t bằng BBT : 2t ≥ c. ax4 + bx3 + cx2 – bx + a = 0. Đặt t = x – x 1 . Tìm đk của t bằng BBT : t ∈ R. giải đề thi tuyển sinh đại học môn toán năm 2004 – 2008 12 d. (x + a)(x + b)(x + c)(x + d) = e với a + b = c + d. Đặt : t = x2 + (a + b)x. Tìm đk của t bằng BBT. e. (x + a)4 + (x + b)4 = c. Đặt : 2 baxt ++= , t ∈ R. 10. Hệ phương trình bậc 1 : . Tí ... á k ⇔ MBkMA = ⇔ k1 kyyy, k1 kxxx BAMBAM − −=− −= (k ≠ 1) M : trung điểm AB ⇔ 2 yyy, 2 xxx BAMBAM +=+= M : trọng tâm ΔABC ⇔ ⎪⎩ ⎪⎨ ⎧ ++= ++= 3 yyyy 3 xxxx CBA M CBA M (tương tự cho vectơ 3 chiều). * Vectơ 3 chiều có thêm tích có hướng và tích hỗn hợp : )'c,'b,'a(v),c,b,a(v / == [ ] ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛= /////// b b a a , a a c c , c c b b v,v GG / /[ v ,v ] v . v .sin( v ,v )=G G G G G G / // v,v]v,v[ GGGG ⊥ * ⇔ /vv GG ⊥ /v.v GG = 0 ; / /v // v [ v ,v ]⇔G G G G = 0 ; /// v,v,v GGG đồng phẳng ⇔ 0v].v,v[ /// =GGG [ ]AC,AB 2 1S ABC =Δ [ ]AS.AC,AB 6 1V ABC.S = / 'D'C'B'A.ABCD AA].AD,AB[V = A, B, C thẳng hàng ⇔ AB // AC JJJG JJJG giải đề thi tuyển sinh đại học môn toán năm 2004 – 2008 32 * Δ trong mp : H là trực tâm ⇔ ⎪⎩ ⎪⎨⎧ = = 0AC.BH 0BC.AH H là chân đường cao ha ⇔ ⎪⎩ ⎪⎨⎧ = BC//BH 0BC.AH M là chân phân giác trong ∧ A ⇔ MC AC ABMB −= M là chân phân giác ngòai ∧ A ⇔ MC AC ABMB += I là tâm đường tròn ngoại tiếp ⇔ IA = IB = IC. I là tâm đường tròn nội tiếp ⇔ I là chân phân giác trong ∧ B của ΔABM với M là chân phân giác trong ∧ A của ΔABC. 2. Đường thẳng trong mp : * Xác định bởi 1 điểm M(xo,yo) và 1vtcp v = (a,b) hay 1 pháp vectơ (A,B) : (d) : ⎩⎨ ⎧ −=−+= += b yy a xx:)d(, btyy atxx oo o o (d) : A(x – xo) + B(y – yo) = 0 * (d) qua A(a, 0); B(0,b) : 1 b y a x =+ * (AB) : AB A AB A yy yy xx xx − −=− − * (d) : Ax + By + C = 0 có )B,A(n;)A,B(v =−= * (d) // (Δ) : Ax + By + C = 0 ⇒ (d) : Ax + By + C′ = 0 * (d) ⊥ (Δ) ⇒ (d) : – Bx + Ay + C/ = 0 * (d), (d/) tạo góc nhọn ϕ thì : cosϕ = ( )/ / / d d d d d d n .n cos( n ,n ) n . n ≠ JJG JJJG JJG JJJG JJG JJJG giải đề thi tuyển sinh đại học môn toán năm 2004 – 2008 33 * d(M,(d)) = 22 MM BA CByAx + ++ * Phân giác của (d) : Ax + By + C = 0 và (d/) : A/x + B/y + C/ = 0 là : 2/2/ /// 22 BA CyBxA BA CByAx + ++±=+ ++ /dd n.n > 0 : phân giác góc tù + , nhọn – /dd n.n < 0 : phân giác góc tù – , nhọn + * Tương giao : Xét hpt tọa độ giao điểm. 3. Mặt phẳng trong không gian : * Xác định bởi 1 điểm M(xo, yo, zo) và 1 pháp vectơ : n = (A, B, C) hay 2 vtcp 'v,v . (P) : A(x – xo) + B(y – yo) + C(z – zo) = 0 n = [ 'v,v ] (P) : Ax + By + Cz + D = 0 có n = (A, B, C). (P) qua A(a,0,0); B(0,b,0); C(0,0,c) ⇔ (P) : x/a + y/b + z/c = 1 * Cho M(xo, yo, zo), (P) : Ax + By + Cz + D = 0 d(M,(P)) = 222 ooo CBA DCzByAx ++ +++ * (P) , (P/) tạo góc nhọn ϕ thì : cos = ϕ )n,ncos( )'P()P( * (P) ⊥ (P/) ⇔ )'P()P( nn ⊥ , (P) // (P/) ⇔ )'P()P( n//n 4. Đường thẳng trong không gian : * Xác định bởi 1 điểm M (xo, yo, zo) và 1 vtcp v = (a, b, c) hay 2 pháp vectơ : 'n,n : (d) : c zz b yy a xx:)d(, ctzz btyy atxx ooo o o o −=−= ⎪⎩ ⎪⎨ ⎧ − += += += ]'n,n[v = giải đề thi tuyển sinh đại học môn toán năm 2004 – 2008 34 * (AB) : A A B A B A B A A x x y y z z x x y y z z − − −= =− − − * (d) = (P) ∩ (P/) : 0 0 Ax By Cz D A' x B' y C' z D' + + + =⎧⎨ + + + =⎩ * (d) qua A, vtcp v thì : d(M,(d)) = v ]v,AM[ * ϕ là góc nhọn giữa (d), (d/) thì : cosϕ = )v,vcos( /dd * ϕ là góc nhọn giữa (d), (P) thì : sinϕ = )n,vcos( pd * (d) qua M, vtcp v , (P) có pvt n : (d) cắt (P) ⇔ n.v ≠ 0 (d) // (P) ⇔ n.v = 0 và M ∉ (P) (d) ⊂ (P) ⇔ n.v = 0 và M ∈ (P) * (d) qua A, vtcp v ; (d /) qua B, vtcp 'v : (d) cắt (d/) ⇔ [ 'v,v ] ≠ 0 , AB]'v,v[ = 0 (d) // (d/) ⇔ [ 'v,v ] = 0 , A ∉ (d/) (d) chéo (d/) ⇔ [ 'v,v ] ≠ 0 , AB]'v,v[ ≠ 0 (d) ≡ (d/) ⇔ [ 'v,v ] = 0 , A ∈ (d/) * (d) chéo (d/) : d(d, d/) = ]'v,v[ AB]'v,v[ * (d) chéo (d/) , tìm đường ⊥ chung (Δ) : tìm ]'v,v[n = ; tìm (P) chứa (d), // n ; tìm (P/) chứa (d/), // n ; (Δ) = (P) ∩ (P/). giải đề thi tuyển sinh đại học môn toán năm 2004 – 2008 35 * (d) ⊥ (P), cắt (d/) ⇒ (d) nằm trong mp ⊥ (P), chứa (d/). * (d) qua A, // (P) ⇒ (d) nằm trong mp chứa A, // (P). * (d) qua A, cắt (d/) ⇒ (d) nằm trong mp chứa A, chứa (d/). * (d) cắt (d/), // (d//) ⇒ (d) nằm trong mp chứa (d/), // (d//). * (d) qua A, ⊥ (d/) ⇒ (d) nằm trong mp chứa A, ⊥ (d/). * Tìm hc H của M xuống (d) : viết pt mp (P) qua M, ⊥ (d), H = (d) ∩ (P). * Tìm hc H của M xuống (P) : viết pt đt (d) qua M, ⊥ (P) : H = (d) ∩ (P). * Tìm hc vuông góc của (d) xuống (P) : viết pt mp (Q) chứa (d), ⊥ (P); (d/) = (P) ∩ (Q) * Tìm hc song song của (d) theo phương (Δ) xuống (P) : viết pt mp (Q) chứa (d) // (Δ); (d/) = (P) ∩ (Q). 5. Đường tròn : * Đường tròn (C) xác định bởi tâm I(a,b) và bk R : (C) : (x – a)2 + (y – b)2 = R2 * (C) : x2 + y2 + 2Ax + 2By + C = 0 có tâm I(–A,–B), bk R = CBA 22 −+ * (d) tx (C) ⇔ d(I, (d)) = R, cắt ⇔ R. * Tiếp tuyến với (C) tại M(xo,yo) : phân đôi t/độ trong (C) : (xo–a)(x–a) + (yo–b)(y–b) = R hay xox + yoy + A(xo + x) + B(yo + y) + C = 0 * Cho (C) : F(x,y) = x2 + y2 + 2Ax + 2By + C = 0 thì PM/(C) = F(xM, yM) = MB.MA = MT2 = MI2 – R2 với MAB : cát tuyến, MT : tiếp tuyến ; M ∈ (C) ⇔ PM/(C) = 0 , M trong (C) ⇔ PM/(C) 0. * Trục đẳng phương của (C) và (C/) : 2(A – A/)x + 2(B – B/)y + (C – C/) = 0 * (C), (C/) ngoài nhau ⇔ II/ > R + R/ : (có 4 tiếp tuyến chung); tx ngoài ⇔ = R + R/ (3 tiếp tuyến chung); cắt ⇔ /RR − < II/ < R + R/ (2 tt chung); tx trong ⇔ = /RR − (1 tt chung là trục đẳng phương) chứa nhau ⇔ < /RR − (không có tt chung). 6. Mặt cầu : * Mc (S) xđ bởi tâm I (a, b, c) và bk R : giải đề thi tuyển sinh đại học môn toán năm 2004 – 2008 36 (S) : (x – a)2 + (y – b2) + (z – c)2 = R2. * (S) : x2 + y2 + z2 + 2Ax + 2By + 2Cz + D = 0 có tâm I(–A,–B,–C), bk R = DCBA 222 −++ * (P) tx (S) ⇔ d(I,(P)) = R, cắt ⇔ R. * Pt tiếp diện với (S) tại M : phân đôi tđộ (S). * Cho (S) : F(x, y, z) = 0. PM/(S) = F (xM, yM, zM); PM/(S) = 0 ⇔ M ∈ (S), 0 ⇔ M ngoài (S). * Mặt đẳng phương của (S) và (S/) : 2(A – A/)x + 2(B – B/)y + 2(C – C/)z + (D – D/) = 0 * Tương giao giữa (S), (S/) : như (C), (C/). * Khi (S), (S/) tx trong thì tiết diện chung là mặt đẳng phương. * Khi (S), (S/) cắt nhau thì mp qua giao tuyến là mặt đẳng phương. 7. Elip : * cho F1, F2, F2F2 = 2c, cho a > c > 0 M ∈ (E) ⇔ MF1 + MF2 = 2a. * (E) : 2 2 2 2 b y a x + = 1 (a > b > 0) : tiêu điểm : F1(–c,0), F2(c,0); đỉnh A1(–a,0); A2(a,0); B1(0,–b); B2(0,b); tiêu cự : F1F2 = 2c, trục lớn A1A2 = 2a; trục nhỏ BB1B2 = 2b; tâm sai e = c/a; đường chuẩn x = ± a/e; bk qua tiêu : MF1 = a + exM, MF2 = a – exM; tt với (E) tại M : phân đôi tọa độ (E), (E) tx (d) : Ax + By + C = 0 ⇔ a2A2 + b2B2 = C2 ; a2 = b2 + c2. * (E) : 1 a y b x 2 2 2 2 =+ (a > b > 0) : không chính tắc; tiêu điểm : F1(0,–c), F2(0,c); đỉnh A1(0,–a), A2(0,a), B1(–b,0), B2(b,0), tiêu cự : F1F2 = 2c; trục lớn A1A2 = 2a; trục nhỏ BB1B2B = 2b; tâm sai e = c/a; đường chuẩn y = ± a/e; bán kính qua tiêu MF1 = a + eyM, MF2 = a – eyM; tiếp tuyến với (E) tại M : phân đôi tọa độ (E); (E) tiếp xúc (d) : Ax + By + C = 0 ⇔ a2B2 + b2 A2 = C2; a2 = b2 + c2 (Chú ý : tất cả các kết quả của trường hợp này suy từ trường hợp chính tắc trên bằng cách thay x bởi y, y bởi x). 8. Hypebol : * Cho F1, F2, F2F2 = 2c, cho 0 < a < c. M ∈ (H) ⇔ 21 MFMF − = 2a (H) : 2 2 2 2 b y a x − = 1 (pt chính tắc) giải đề thi tuyển sinh đại học môn toán năm 2004 – 2008 37 tiêu điểm F1(–c,0), F2(c,0); đỉnh tr.thực A1(–a,0), A2(a,0); đỉnh trục ảo BB1(0,–b), B2(0,b); tiêu cự F1F2 = 2c; độ dài trục thực A1A2 = 2a; độ dài trục ảo BB1B2 = 2b; tâm sai : e = c/a; đường chuẩn : x = ± a/e; bán kính qua tiêu : M nhánh phải MF∈ 1 = exM + a , MF2 = exM – a , M ∈ nhánh trái MF1 = – exM – a, MF2 = –exM + a; tiếp tuyến với (H) tại M : phân đôi tọa độ (H); (H) tx (d) : Ax + By + C = 0 ⇔ a2A2 – b2B2 = C2 > 0; tiệm cận y = ± a b x hình chữ nhật cơ sở : x = ± a, y = ± b; c2 = a2 + b2. (H) : 1 b x a y 2 2 2 2 =− (pt không chính tắc) tiêu điểm F1(0,–c), F2(0,c); đỉnh trục thực A1(0,–a), A2(0,a); đỉnh trục ảo B1(–b,0), B2(b,0); tiêu cự F1F2 = 2c; độ dài trục thực A1A2 = 2a; độ dài trục ảo B1BB1 = 2b; tâm sai : e = c/a; đường chuẩn : y = ± a/e; bán kính qua tiêu : M ∈ nhánh trên MF1 = eyM + a, MF2 = eyM – a; M ∈ nhánh dưới MF1 = –eyM – a, MF2 = – eyM + a; tiếp tuyến với (H) tại M : phân đôi tọa độ (H); (H) tx (d) : Ax + By + C = 0 ⇔ a2B2 – b2A2 = C2 > 0; tiệm cận x = ± a b y hình chữ nhật cơ sở : y= ± a, x = ± b; c2 = a2 + b2 (chú ý : tất cả các kết quả của trường hợp này suy từ trường hợp chính tắc bằng cách thay x bởi y, y bởi x). 9. Parabol : * Cho F, F ∉ (Δ) M ∈ (P) ⇔ MF = d(M,(Δ)) (P) : y2 = 2px (p > 0) (phương trình chính tắc). tiêu điểm (p/2, 0), đường chuẩn x = – p/2; bán kính qua tiêu MF = p/2 + xM; tâm sai e = 1, tiếp tuyến với (P) tại M : phân đôi tọa độ; (P) tx (d) : Ax + By + C = 0 ⇔ pB2 = 2AC (p : hệ số của x trong (P) đi với B : hệ số của y trong (d)); tham số tiêu : p. (P) : y2 = – 2px (p > 0) (phương trình không chính tắc). tiêu điểm (–p/2, 0), đường chuẩn x = p/2; bán kính qua tiêu MF = p/2 – xM; tâm sai e = 1, tiếp tuyến với (P) tại M : phân đôi tọa độ; (P) tx (d) : Ax + By + C = 0 ⇔ pB2 = – 2AC. (P) : x2 = 2py (p > 0) (phương trình không chính tắc). giải đề thi tuyển sinh đại học môn toán năm 2004 – 2008 38 tiêu điểm (0, p/2), đường chuẩn y = – p/2; bán kính qua tiêu MF = p/2 + yM; tâm sai e = 1, tiếp tuyến với (P) tại M : phân đôi tọa độ; (P) tx (d) : Ax + By + C = 0 ⇔ pA2 = 2BC (p : hệ số của y trong (P) đi với A : hệ số của x trong (d)). (P) : x2 = – 2py (p > 0) (phương trình không chính tắc). tiêu điểm (0, – p/2), đường chuẩn y = p/2; bán kính qua tiêu MF = p/2 – yM; tâm sai e = 1, tiếp tuyến với (P) tại M : phân đôi tọa độ; (P) tx (d) : Ax + By + C = 0 ⇔ pA2 = – 2BC . CHÚ Ý : * Cần có quan điểm giải tích khi làm toán hình giải tích : đặt câu hỏi cần tìm gì? (điểm trong mp M(xo,yo) : 2 ẩn ; điểm trong không gian (3 ẩn); đường thẳng trong mp Ax + By + C = 0 : 3 ẩn A, B, C - thực ra là 2 ẩn; đường tròn : 3 ẩn a, b, R hay A, B, C; (E) : 2 ẩn a, b và cần biết dạng ; (H) : như (E); (P) : 1 ẩn p và cần biết dạng; mp (P) : 4 ẩn A, B, C, D; mặt cầu (S) : 4 ẩn a, b, c, R hay A, B, C, D; đường thẳng trong không gian (d) = (P) ∩ (Q); đường tròn trong không gian (C) = (P) ∩ (S). * Với các bài toán hình không gian : cần lập hệ trục tọa độ.
Tài liệu đính kèm: