Câu I (2,0 điểm). Cho hàm số y = x3 – 2x2 + (1 – m)x + m (1), m là số thực
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1.
2. Tìm m để đồ thị của hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ x1, x2, x3 thỏa mãn điều kiện :
ÐỀ THI TUYỂN SINH ĐẠI HỌC KHỐI A NĂM 2010 Môn thi : TOÁN I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm). Cho hàm số y = x3 – 2x2 + (1 – m)x + m (1), m là số thực 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1. 2. Tìm m để đồ thị của hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ x1, x2, x3 thỏa mãn điều kiện : Câu II (2,0 điểm) 1. Giải phương trình 2.. Giải bất phương trình : Câu III (1,0 điểm) . Tính tích phân : Câu IV (1,0 điểm). Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M và N lần lượt là trung điểm của các cạnh AB và AD; H là giao điểm của CN và DM. Biết SH vuông góc với mặt phẳng (ABCD) và SH = . Tính thể tích khối chóp S.CDNM và khoảng cách giữa hai đường thẳng DM và SC theo a. Câu V (1,0 điểm). Giải hệ phương trình (x, y Î R). II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm) 1. Trong mặt phẳng tọa độ Oxy , cho hai đường thẳng d1: và d2: . Gọi (T) là đường tròn tiếp xúc với d1 tại A, cắt d2 tại hai điểm B và C sao cho tam giác ABC vuông tại B. Viết phương trình của (T), biết tam giác ABC có diện tích bằng và điểm A có hoành độ dương. 2. Trong không gian tọa độ Oxyz, cho đường thẳng và mặt phẳng (P) : x - 2y + z = 0. Gọi C là giao điểm của D với (P), M là điểm thuộc D. Tính khoảng cách từ M đến (P), biết MC = . Câu VII.a (1,0 điểm). Tìm phần ảo của số phức z, biết B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm) 1. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A có đỉnh A(6; 6), đường thẳng đi qua trung điểm của các cạnh AB và AC có phương trình x + y - 4 = 0. Tìm tọa độ các đỉnh B và C, biết điểm E(1; -3) nằm trên đường cao đi qua đỉnh C của tam giác đã cho. 2. Trong không gian tọa độ Oxyz, cho điểm A(0; 0; -2) và đường thẳng . Tính khoảng cách từ A đến D. Viết phương trình mặt cầu tâm A, cắt D tại hai điểm B và C sao cho BC = 8. Câu VII.b (1 điểm). Cho số phức z thỏa mãn . Tìm môđun của số phức
Tài liệu đính kèm: