Câu 1 (2 điểm).
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số y=x2-2x+4/x-2 (1)
2) Tìm m để đường thẳng dm: y= mx+2-2m cắt đồ thị của hàm số (1) tại hai điểm phân biệt.
Bộ giáo dục và đào tạo kỳ thi tuyển sinh đại học, cao đẳng năm 2003 ---------------------- Môn thi: toán Khối D Đề chính thức Thời gian làm bài: 180 phút _______________________________________________ Câu 1 (2 điểm). 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số 2 2 4 (1) 2 x xy x − += − . 2) Tìm để đ−ờng thẳng d ym : 2 2m mx m= + − cắt đồ thị của hàm số (1) tại hai điểm phân biệt. Câu 2 (2 điểm). 1) Giải ph−ơng trình 2 2 2πsin tg cos 0 2 4 2 x xx − − = . 2) Giải ph−ơng trình . 2 222 2x x x x− + −− = 3 Câu 3 (3 điểm). 1) Trong mặt phẳng với hệ tọa độ Đêcac vuông góc cho đ−ờng tròn Oxy 4)2()1( :)( 22 =−+− yxC và đ−ờng thẳng : 1 0d x y− − = . Viết ph−ơng trình đ−ờng tròn ( đối xứng với đ−ờng tròn qua đ−ờng thẳng Tìm tọa độ các giao điểm của và . ')C (C ( )C .d ) ( ')C 2) Trong không gian với hệ tọa độ Đêcac vuông góc Oxyz cho đ−ờng thẳng 3 2 : 1 0.k x ky z d kx y z 0+ − + = − + + = Tìm để đ−ờng thẳng vuông góc với mặt phẳng k kd ( ) : 2 5 0P x y z− − + = . 3) Cho hai mặt phẳng và vuông góc với nhau, có giao tuyến là đ−ờng thẳng ( )P ( )Q ∆ . Trên lấy hai điểm với ∆ , A B AB a= . Trong mặt phẳng lấy điểm , trong mặt phẳng ( lấy điểm sao cho , ( )P C )Q D AC BD cùng vuông góc với ∆ và . Tính bán kính mặt cầu ngoại tiếp tứ diện và tính khoảng cách từ đến mặt phẳng AC BD A AB== ABCD ( )BCD theo . a Câu 4 ( 2 điểm). 1) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 2 1 1 xy x += + trên đoạn [ ]1; 2− . 2) Tính tích phân 2 2 0 I x x d= −∫ x . Câu 5 (1 điểm). Với là số nguyên d−ơng, gọi n 3 3na − là hệ số của 3 3nx − trong khai triển thành đa thức của ( 1 . Tìm n để 2 ) ( 2)nx x+ + n 3 3 26na − n= . ------------------------------------------------ Hết ------------------------------------------------ Ghi chú: Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh:.. . Số báo danh:
Tài liệu đính kèm: