Đề thi thử đại học môn Toán (Đề 77)

Đề thi thử đại học môn Toán (Đề 77)

I:PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)

Câu I (2 điểm). Cho hàm số y=2x+1/x+2 có đồ thị là (C)

 1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số

 2.Chứng minh đường thẳng d: y = -x + m luôn luôn cắt đồ thị (C) tại hai điểm phân biệt A, B. Tìm m để đoạn AB có độ dài nhỏ nhất.

 

doc 3 trang Người đăng ngochoa2017 Lượt xem 727Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi thử đại học môn Toán (Đề 77)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012
 Môn thi : TOÁN (ĐỀ 77)
I:PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)
C©u I (2 ®iÓm). Cho hµm sè cã ®å thÞ lµ (C) 
	1.Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè
	2.Chøng minh ®­êng th¼ng d: y = -x + m lu«n lu«n c¾t ®å thÞ (C) t¹i hai ®iÓm ph©n biÖt A, B. T×m m ®Ó ®o¹n AB cã ®é dµi nhá nhÊt.
C©u II (2 ®iÓm)
	1.Gi¶i ph­¬ng tr×nh 9sinx + 6cosx – 3sin2x + cos2x = 8
 2 .Tính tích phân: .
C©u III (2 ®iÓm). 
1.Giải bất phương trình: 
 2.Cã bao nhiªu sè tù nhiªn cã 4 ch÷ sè kh¸c nhau mµ trong mçi sè lu«n lu«n cã mÆt hai ch÷ sè ch½n vµ ba ch÷ sè lÎ 
C©u IV (1 ®iÓm). Cho l¨ng trô tam gi¸c ABC.A1B1C1 cã tÊt c¶ c¸c c¹nh b»ng a, gãc t¹o bëi c¹nh bªn vµ mÆt ph¼ng ®¸y b»ng 300. H×nh chiÕu H cña ®iÓm A trªn mÆt ph¼ng (A1B1C1) thuéc ®­êng th¼ng B1C1. TÝnh kho¶ng c¸ch gi÷a hai ®­êng th¼ng AA1 vµ B1C1 theo a.
II. PHẦN RIÊNG (3.0 điểm)
C©u Va 
 1.(2 ®iÓm)Trong mÆt ph¼ng víi hÖ täa ®é Oxy cho ®­êng trßn (C) cã ph­¬ng tr×nh (x-1)2 + (y+2)2 = 9 
vµ ®­êng th¼ng d: x + y + m = 0. T×m m ®Ó trªn ®­êng th¼ng d cã duy nhÊt mét ®iÓm A mµ tõ ®ã kÎ ®­îc hai tiÕp tuyÕn AB, AC tíi ®­êng trßn (C) (B, C lµ hai tiÕp ®iÓm) sao cho tam gi¸c ABC vu«ng.
 2.(1 ®iÓm). Cã bao nhiªu sè tù nhiªn cã 4 ch÷ sè kh¸c nhau vµ kh¸c 0 mµ trong mçi sè lu«n lu«n cã mÆt hai ch÷ sè ch½n vµ hai ch÷ sè lÎ.
C©u Vb 
 1..(2 ®iÓm)Trong kh«ng gian víi hÖ täa ®é Oxyz cho ®iÓm A(10; 2; -1) vµ ®­êng th¼ng d cã ph­¬ng tr×nh. LËp ph­¬ng tr×nh mÆt ph¼ng (P) ®i qua A, song song víi d vµ kho¶ng c¸ch tõ 
d tíi (P) lµ lín nhÊt.
 2.(1 ®iÓm) XÐt ba sè thùc kh«ng ©m a, b, c tháa m·n a2009 + b2009 + c2009 = 3. 
T×m gi¸ trÞ lín nhÊt cña biÓu thøc P = a4 + b4 + c4
 Hết
Đáp án ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 
 Môn thi : TOÁN (ĐỀ 77 )
I:PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)
CâuI:)(2 ®iÓm) 
 1) a.TX§: D = R\{-2}
b.ChiÒu biÕn thiªn 
+Giíi h¹n: 
Suy ra ®å thÞ hµm sè cã mét tiÖm cËn ®øng lµ x = -2 vµ mét tiÖm cËn ngang lµ y = 2
+ Suy ra hµm sè ®ång biÕn trªn mçi kho¶ng vµ 
+B¶ng biÕn thiªn
 x -2 
 y’ + +
 2
 y 
 2 
c.§å thÞ:§å thÞ c¾t c¸c trôc Oy t¹i ®iÓm (0; ) vµ c¾t trôc Ox t¹i ®iÓm(;0)
y
O
2
-2
§å thÞ nhËn ®iÓm (-2;2) lµm t©m ®èi xøng
x
2)Hoµnh ®é giao ®iÓm cña ®å thÞ (C ) vµ ®­êng th¼ng d lµ nghiÖm cña ph­¬ng tr×nh 
Do (1) cã nªn ®­êng th¼ng d lu«n lu«n c¾t ®å thÞ (C ) t¹i hai ®iÓm ph©n biÖt A, B
Ta cã yA = m – xA; yB = m – xB nªn AB2 = (xA – xB)2 + (yA – yB)2 = 2(m2 + 12) suy ra AB ng¾n nhÊt ó AB2 nhá nhÊt ó m = 0. Khi ®ã 
Câu II:)(2 ®iÓm)
1)(1 ®iÓm).Ph­¬ng tr×nh ®· cho t­¬ng ®­¬ng víi 
9sinx + 6cosx – 6sinx.cosx + 1 – 2sin2x = 8 ó 6cosx(1 – sinx) – (2sin2x – 9sinx + 7) = 0 
ó 6cosx(1 – sinx) – (sinx – 1)(2sinx – 7) = 0 ó (1-sinx)(6cosx + 2sinx – 7) = 0
ó ó
2) (1 ®iÓm).Tính: Đặt => dx=2tdt; khi x=0=>t=1,x=3=>t=2
C©u III (2 ®iÓm). 
1(1 ®iÓm)..BG: Giải bất phương trình: (1)
Điều kiện: 
Khi => x+1>0 bình phương 2 vế phương trình (2)
Kết hợp điều kiện vậy nghiệm của bất phương trình là: 
 2. (1 ®iÓm).Tõ gi¶ thiÕt bµi to¸n ta thÊy cã c¸ch chän 2 ch÷ sè ch½n (kÓ c¶ sè cã ch÷ sè 0 ®øng ®Çu) vµ =10 c¸ch chän 2 ch÷ sè lÏ => cã . = 100 bé 5 sè ®­îc chän.
Mçi bé 5 sè nh­ thÕ cã 5! sè ®­îc thµnh lËp => cã tÊt c¶ ..5! = 12000 sè.
MÆt kh¸c sè c¸c sè ®­îc lËp nh­ trªn mµ cã ch÷ sè 0 ®øng ®Çu lµ . VËy cã tÊt c¶ 12000 – 960 = 11040 sè tháa m·n bµi to¸n
II.PhÇn riªng.(3điểm)
C©u Va : 
1)(2 ®iÓm)Tõ pt ct cña ®­êng trßn ta cã t©m I(1;-2), R = 3, tõ A kÎ ®­îc 2 tiÕp tuyÕn AB, AC tíi ®­êng trßn vµ => tø gi¸c ABIC lµ h×nh vu«ng c¹nh b»ng 3 
 2. (1 ®iÓm)Tõ gi¶ thiÕt bµi to¸n ta thÊy cã c¸ch chän 2 ch÷ sè ch½n (v× kh«ng cã sè 0)vµ c¸ch chän 2 ch÷ sè lÏ => cã .= 60 bé 4 sè tháa m·n bµi to¸n
Mçi bé 4 sè nh­ thÕ cã 4! sè ®­îc thµnh lËp. VËy cã tÊt c¶ ..4! = 1440 sè
C©u Vb
1)(2 ®iÓm)Gäi H lµ h×nh chiÕu cña A trªn d, mÆt ph¼ng (P) ®i qua A vµ (P)//d, khi ®ã kho¶ng c¸ch gi÷a d vµ (P) lµ kho¶ng c¸ch tõ H ®Õn (P).
Gi¶ sö ®iÓm I lµ h×nh chiÕu cña H lªn (P), ta cã => HI lín nhÊt khi 
VËy (P) cÇn t×m lµ mÆt ph¼ng ®i qua A vµ nhËn lµm vÐc t¬ ph¸p tuyÕn
v× H lµ h×nh chiÕu cña A trªn d nªn lµ vtcp cña d) 
VËy (P): 7(x – 10) + (y – 2) – 5(z + 1) = 0 ó 7x + y -5z -77 = 0)
2). (1 ®iÓm)¸p dông bÊt ®¼ng thøc C« si cho 2005 sè 1 vµ 4 sè a2009 ta cã
T­¬ng tù ta cã
Céng theo vÕ (1), (2), (3) ta ®­îc 
 Tõ ®ã suy ra 
MÆt kh¸c t¹i a = b = c = 1 th× P = 3 nªn gi¸ trÞ lín nhÊt cña P = 3.
 Hết

Tài liệu đính kèm:

  • docDe thi thu dai hoc số 77.doc