Đề thi thử đại học môn thi: Toán; khối B - THPT Nhã Nam

Đề thi thử đại học môn thi: Toán; khối B - THPT Nhã Nam

PHẦN RIÊNG (3 điểm) : Thí sinh chỉ được làm một trong hai phần ( phần A hoặc B)

A. Theo chương trình Chuẩn

Câu VI.a (2 điểm)

1. Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): x2 + y2 - 2x - 2my + m2 - 24 = 0 có tâm I và đường thẳng : mx + 4y = 0. Tìm m biết đường thẳng  cắt đường tròn (C) tại hai điểm phân biệt A,B thỏa mãn diện tích tam giác IAB bằng 12.

 

doc 5 trang Người đăng ngochoa2017 Lượt xem 768Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi thử đại học môn thi: Toán; khối B - THPT Nhã Nam", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
THPT NHÃ NAM
ĐỀ THI THỬ ĐẠI HỌC NĂM HỌC 2010-2011
Môn thi : TOÁN ; Khối : B
Thời gian làm bài 180 phút, không kể thời gian giao đề
PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm):
Câu I: (2 điểm) Cho hàm số (C)
Khảo sát và vẽ đồ thị hàm số.
Tìm m để đường thẳng d: y = 2x + m cắt đồ thị (C) tại 2 điểm phân biệt A, B sao cho AB = .
Câu II: (2 điểm)
Giải phương trình: , (x Î R)
Giải hệ phương trình: (x, yÎ R)
Câu III: (1 điểm) Tính tích phân sau: 
Câu IV: (1 điểm) Cho hình chóp S.ABCD đáy ABCD là hình thoi. SA = x (0 < x < ) các cạnh còn lại đều bằng 1. Tính thể tích của hình chóp S.ABCD theo x
Câu V: (1 điểm) Cho x,y Î R và x, y > 1. Tìm giá trị nhỏ nhất của 
PHẦN RIÊNG (3 điểm) : Thí sinh chỉ được làm một trong hai phần ( phần A hoặc B)
A. Theo chương trình Chuẩn
Câu VI.a (2 điểm)
Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C): x2 + y2 - 2x - 2my + m2 - 24 = 0 có tâm I và đường thẳng D: mx + 4y = 0. Tìm m biết đường thẳng D cắt đường tròn (C) tại hai điểm phân biệt A,B thỏa mãn diện tích tam giác IAB bằng 12.
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: ; d2: và mặt phẳng (P): x - y - 2z + 3 = 0. Viết phương trình chính tắc của đường thẳng D, biết D nằm trên mặt phẳng (P) và D cắt hai đường thẳng d1 , d2 .
Câu VII.a (1 điểm) Có bao nhiêu số tự nhiên có 4 chữ số khác nhau và khác 0 mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ.
B. Theo chương trình Nâng cao
Câu VI.b (2 điểm)
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB: x - y - 2 = 0, phương trình cạnh AC: x + 2y - 5 = 0. Biết trọng tâm của tam giác G(3; 2). Viết phương trình cạnh BC.
Trong không gian với hệ trục toạ độ Oxyz cho điểm A(1 ;0 ; 1), B(2 ; 1 ; 2) và mặt phẳng (Q):
 x + 2y + 3z + 3 = 0. Lập phương trình mặt phẳng (P) đi qua A, B và vuông góc với (Q).
Câu VII.b (1 điểm) Giải bất phương trình sau: 
........................... Hết ..........................
Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm.
Họ và tên thí sinh: ; Số báo danh: .........................
ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC TÓAN KHỐI B
NĂM HỌC : 2010-2011
CÂU
NỘI DUNG
ĐIỂM
I-1
(1 điểm)
Tập xác định D = R\{- 1}
Sự biến thiên:
-Chiều biến thiên: .
 Hàm số đồng biến biến trên các khoảng (- ¥; - 1) và (- 1 ; + ¥).
- Cực trị: Hàm số không có cực trị.
0,25
- Giới hạn tại vô cực, giới hạn vô cực và tiệm cận:
. Đường thẳng y = 2 là tiệm cận ngang.
. Đường thẳng x = - 1 là tiệm cận đứng.
0,25
-Bảng biến thiên: 
x
-¥	- 1	+¥
y’
	+	+
y
	+¥	2
2	 - ¥
0,25
y
x
2
y=2
x= -1
-1
O
1
-2
 Đồ thị:
-Đồ thị hàm số cắt trục Ox tại điểm (1;0)
-Đồ thị hàm số cắt trục Oy tại điểm (0;- 2)
- Đồ thị hàm số có tâm đối xứng là giao điểm
hai tiệm cận I(- 1; 2).
0,25
I-2
(1 điểm)
Phương trình hoành độ giao điểm: 2x2 + mx + m + 2 = 0 , (x≠ - 1) (1)
0,25
d cắt (C) tại 2 điểm phân biệt Û PT(1) có 2 nghiệm phân biệt khác -1 Û m2 - 8m - 16 > 0 (2)
0,25
Gọi A(x1; 2x1 + m) , B(x2; 2x2 + m). Ta có x1, x2 là 2 nghiệm của PT(1).
Theo ĐL Viét ta có .
0,25
AB2 = 5 Û Û Û m2 - 8m - 20 = 0
Û m = 10 , m = - 2 ( Thỏa mãn (2))
KL: m = 10, m = - 2.
0,25
II-1
(1 điểm)
PT Û cos2x + cos8x + sinx = cos8x 
0,25
Û 1- 2sin2x + sinx = 0
0,25
Û sinx = 1 hoặc 
0,25
Û 
0,25
II-2
(1 điểm)
ĐK: x + y ³ 0 , x - y ³ 0, y ³ 0
0,25
PT(1) Û 
0,25
Từ PT(4) Û y = 0 v 5y = 4x
Với y = 0 thế vào PT(2) ta có x = 9 (Không thỏa mãn đk (3))
0,25
Với 5y = 4x thế vào PT(2) ta có 
KL: HPT có 1 nghiệm 
0,25
III
(1 điểm)
 ; Đặt 
0,25
Khi x = ln3 thì t = 2 ; Khi x = ln8 thì t = 3; Ta có 2tdt = exdx Û 
0,25
Do đó 
0,25
= .
0,25
IV
(1 điểm)
Ta có 
Tương tự ta có SO = OA
vậy tam giác SCA vuông tại S.
Mặt khác ta có 
0.5
Gọi H là hình chiếu của S xuống (CAB)
Vì SB = SD nên HB = HD 
 H CO
0.25
Mà 
Vậy V = 
0.25
V
(1 điểm)
Đặt t = x + y ; t > 2. Áp dụng BĐT 4xy £ (x + y)2 ta có 
0,25
. Do 3t - 2 > 0 và nên ta có
0,25
Xét hàm số f’(t) = 0 Û t = 0 v t = 4.
t
2 4	+¥
f’(t)
 - 0	+
f(t)
 + ¥	+¥
8
0,25
Do đó min P = = f(4) = 8 đạt được khi 
0,25
VI.a -1
(1 điểm)
I
A
B
D
H
5
Đường tròn (C) có tâm I(1; m), bán kính R = 5.
0,25
Gọi H là trung điểm của dây cung AB. 
Ta có IH là đường cao của tam giác IAB.
IH = 
0,25
0,25
Diện tích tam giác IAB là 
Û 
0,25
VI.a -2
(1 điểm)
Gọi A = d1Ç(P) suy ra A(1; 0 ; 2) ; B = d2 Ç (P) suy ra B(2; 3; 1)
0,25
Đường thẳng D thỏa mãn bài toán đi qua A và B.
0,25
Một vectơ chỉ phương của đường thẳng D là 
0,25
Phương trình chính tắc của đường thẳng D là: 
0,25
VII.a
(1 điểm)
Từ giả thiết bài toán ta thấy có cách chọn 2 chữ số chẵn (vì không có số 0)và cách chọn 2 chữ số lẽ => có .= 60 bộ 4 số thỏa mãn bài toán
0,5
Mỗi bộ 4 số như thế có 4! số được thành lập. Vậy có tất cả ..4! = 1440 số
0,5
VI.b- 1
(1 điểm)
Tọa độ điểm A là nghiệm của HPT: Û A(3; 1)
0,25
Gọi B(b; b- 2) Î AB, C(5- 2c; c) Î AC
0,25
Do G là trọng tâm của tam giác ABC nên Û . Hay B(5; 3), C(1; 2)
0,25
Một vectơ chỉ phương của cạnh BC là . 
Phương trình cạnh BC là: x - 4y + 7 = 0
0,25
VI.b-2
(1 điểm)
Ta có 
0.5
Vì nên mặt phẳng (P) nhận làm véc tơ pháp tuyến
0.25
Vậy (P) có phương trình x - 2y + z - 2 = 0
0.25
VII.b
(1 điểm)
Giải bất phương trình ...
Bpt
0,5
. Giải (1): (1) 
0,25
. Giải (2): (2)
0,25

Tài liệu đính kèm:

  • docde dap an thi thu hay.doc