Câu 2( 4 điểm )
Cho tam giác ABC vuông ở A và nội tiếp trong đường tròn (O) .Trên tia đối của các tia
BA, CA ta lấy các điểm E và F sao cho BE = CF = BC . M là điểm chạy trên (O).
Chứng minh rằng : MA + MB + MC EF.
SỞ GIÁO DỤC –ĐÀO TẠO KỲ THI LẬP ĐỘI TUYỂN HỌC SINH GIỎI TỈNH BÀ RỊA –VŨNG TÀU LỚP 12 DỰ THI QUỐC GIA, NĂM HỌC 2010-2011 MÔN THI: TOÁN Thời gian làm bài thi 180 phút Ngày thi: 07/12/2010 Câu 1( 4 điểm ) a/ Giải phương trình: . b/ Giải bất phương trình: . Câu 2( 4 điểm ) Cho tam giác ABC vuông ở A và nội tiếp trong đường tròn (O) .Trên tia đối của các tia BA, CA ta lấy các điểm E và F sao cho BE = CF = BC . M là điểm chạy trên (O). Chứng minh rằng : MA + MB + MC EF. Câu 3( 4 điểm ) Cho dãy số (un) thỏa : Chứng minh dãy số (un) có giới hạn. Tìm . Câu 4( 3 điểm ) Tìm tất cả các hàm số , thoả mãn: . Câu 5( 5 điểm ) Tìm tất cả các số chính phương gồm 4 chữ số sao cho 2 chữ số đầu giống nhau, 2 chữ số cuối giống nhau và khác không? Trên mặt phẳng cho 2 x 2010 điểm ; trong đó không có bất kì 3 điểm nào thẳng hàng.Người ta tô 2010 điểm bằng màu đỏ và tô 2010 điểm còn lại bằng màu xanh. Chứng minh rằng:bao giờ cũng tồn tại một cách nối tất cả các điểm màu đỏ với tất cả các điểm màu xanh bởi 2010 đoạn thẳng không có điểm nào chung. ---------------------------------------------------------HẾT----------------------------------------------- Họ và tên thí sinh: Số báo danh: Chữ ký của giám thị 1:
Tài liệu đính kèm: