Bài 1:(3 điểm)
Cho hàm số y = x3 – 3x2 + 2.
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2) Dùng đồ thị (C), biện luận số nghiệm của phương trình sau theo tham số m :
x3 – 3x2 + 4 – m = 0
TRƯỜNG THPT HÒA ĐA ĐỀ SỐ 1 ĐỀ THI HỌC KÌ II NĂM HỌC 2008 – 2009 MÔN THI: TOÁN 12 Thời gian làm bài 150 phút I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm) Bài 1:(3 điểm) Cho hàm số y = x3 – 3x2 + 2. 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Dùng đồ thị (C), biện luận số nghiệm của phương trình sau theo tham số m : x3 – 3x2 + 4 – m = 0 Bài 2: (3 điểm) 1) Giải phương trình sau: 2) Tính tích phân sau: 3) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x3 – 3x2 – 9x + 35 trên đoạn [ -2; 2] Bài 3:(1 điểm) Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và góc giữa cạnh bên với mặt đáy bằng j. Tính thể tích khối chóp S.ABC theo a và j. II. PHẦN RIÊNG (3 điểm) Thí sinh học chương trình nào thì chỉ được làm phần dành riêng cho chương trình đó (phần 1 hoặc phần 2) 1) Theo chương trình cơ bản: Bài 4:(2 điểm) Trong không gian Oxyz cho các điểm A(6; -2; 3), B(0; 1; 6) và mặt phẳng (a): 2x + 3y – z + 11 = 0 1) Viết phương trình mặt phẳng (b) đi qua hai điểm A, B và vuông góc với mặt phẳng (a) 2) Viết phương trình mặt cầu (S) có tâm A và tiếp xúc với mặt phẳng (a). Bài 5:(1 điểm) Cho số phức z = (1 – 2i)(4 – 3i) – 2 + 8i. Xác định phần thực, phần ảo và tính môđun số phức z. 2) Theo chương trình nâng cao: Bài 4:(2 điểm) Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(5; 1; 3), B(1; 6; 2), C(5; 0; 4), D(4; 0; 6). 1) Chứng minh A, B, C, D là bốn đỉnh của một tứ diện. Tính thể tích khối tứ diện ABCD. 2) Viết phương trình của mặt phẳng (ABC). 3) Viết phương trình mặt cầu (S) tâm D và tiếp xúc với mặt phẳng (ABC). Tìm tọa độ tiếp điểm. Bài 5:(1 điểm) Tính (1 + i)15 TRƯỜNG THPT HÒA ĐA ĐỀ THI HỌC KÌ II NĂM HỌC 2008 – 2009 ĐỀ SỐ 2 MÔN THI: TOÁN 12 Thời gian làm bài 150 phút I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm) Bài 1:(3 điểm) Cho hàm số y = – x3 + 3x2 + 1. 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Dùng đồ thị (C), biện luận số nghiệm của phương trình sau theo tham số m : – x3 + 3x2 + 3 – m = 0 Bài 2: (3 điểm) 1) Giải phương trình sau: 2) Tính tích phân sau: 3) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 – 8x2 + 16 trên đoạn [ -1 ; 3] Bài 3: (1 điểm) Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc giữa cạnh bên với mặt đáy bằng j. Tính thể tích khối chóp S.ABCD theo a và j. II. PHẦN RIÊNG (3 điểm) Thí sinh học chương trình nào thì chỉ được làm phần dành riêng cho chương trình đó (phần 1 hoặc phần 2) 1) Theo chương trình cơ bản: Bài 4:(2 điểm) Trong không gian Oxyz, cho các điểm M(2; 5; -3), N(4; -3; 1) và mặt phẳng : x – 2y – z + 1 = 0 1) Viết phương trình mặt phẳng (P) đi qua hai điểm M, N và vuông góc với mặt phẳng . 2) Viết phương trình mặt cầu (S) đường kính MN. Bài 5:(1 điểm) Cho số phức z = (2 – 3i)(1 + 2i) – 5 + 3i. Xác định phần thực, phần ảo và tính môđun số phức z. 2) Theo chương trình nâng cao: Bài 4:(2 điểm) Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(– 1; –2; 3), B(2; – 3; – 1), C(– 3; 2; – 1), D(– 2; 0; – 3). 1) Chứng minh A, B, C, D là bốn đỉnh của một tứ diện. Tính thể tích khối tứ diện ABCD. 2) Viết phương trình của mặt phẳng (BCD). 3) Viết phương trình mặt cầu (S) tâm A và tiếp xúc với mặt phẳng (BCD). Tìm tọa độ tiếp điểm. Bài 5:(1 điểm) Tính (1 + i)15
Tài liệu đính kèm: