Đề thi học kì II năm học 2008 – 2009 môn thi: Toán 12

Đề thi học kì II năm học 2008 – 2009 môn thi: Toán 12

Bài 1:(3 điểm)

 Cho hàm số y = x3 – 3x2 + 2.

1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.

2) Dùng đồ thị (C), biện luận số nghiệm của phương trình sau theo tham số m :

x3 – 3x2 + 4 – m = 0

 

doc 4 trang Người đăng haha99 Lượt xem 929Lượt tải 0 Download
Bạn đang xem tài liệu "Đề thi học kì II năm học 2008 – 2009 môn thi: Toán 12", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
TRƯỜNG THPT HÒA ĐA
ĐỀ SỐ 1
ĐỀ THI HỌC KÌ II NĂM HỌC 2008 – 2009
MÔN THI: TOÁN 12
Thời gian làm bài 150 phút
I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm)
Bài 1:(3 điểm) 
 Cho hàm số y = x3 – 3x2 + 2.
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2) Dùng đồ thị (C), biện luận số nghiệm của phương trình sau theo tham số m :	
x3 – 3x2 + 4 – m = 0
Bài 2: (3 điểm)
1) Giải phương trình sau: 
2) Tính tích phân sau: 
3) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x3 – 3x2 – 9x + 35 trên đoạn [ -2; 2] 
Bài 3:(1 điểm) 
 Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và góc giữa cạnh bên với mặt đáy bằng j. Tính thể tích khối chóp S.ABC theo a và j.
II. PHẦN RIÊNG (3 điểm)
Thí sinh học chương trình nào thì chỉ được làm phần dành riêng cho chương trình đó (phần 1 hoặc phần 2)
1) Theo chương trình cơ bản:
Bài 4:(2 điểm) 
 Trong không gian Oxyz cho các điểm A(6; -2; 3), B(0; 1; 6) và mặt phẳng 
(a): 2x + 3y – z + 11 = 0 
1) Viết phương trình mặt phẳng (b) đi qua hai điểm A, B và vuông góc với mặt phẳng (a)
2) Viết phương trình mặt cầu (S) có tâm A và tiếp xúc với mặt phẳng (a).
Bài 5:(1 điểm) 
 Cho số phức z = (1 – 2i)(4 – 3i) – 2 + 8i. Xác định phần thực, phần ảo và tính môđun số phức z.
2) Theo chương trình nâng cao: 
Bài 4:(2 điểm) 
 Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(5; 1; 3), B(1; 6; 2), C(5; 0; 4), D(4; 0; 6).
 1) Chứng minh A, B, C, D là bốn đỉnh của một tứ diện. Tính thể tích khối tứ diện ABCD.
 2) Viết phương trình của mặt phẳng (ABC).
 3) Viết phương trình mặt cầu (S) tâm D và tiếp xúc với mặt phẳng (ABC). Tìm tọa độ tiếp điểm.
Bài 5:(1 điểm) Tính (1 + i)15
TRƯỜNG THPT HÒA ĐA
ĐỀ THI HỌC KÌ II NĂM HỌC 2008 – 2009
ĐỀ SỐ 2
MÔN THI: TOÁN 12
Thời gian làm bài 150 phút
I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm)
Bài 1:(3 điểm) 
 Cho hàm số y = – x3 + 3x2 + 1.
1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2) Dùng đồ thị (C), biện luận số nghiệm của phương trình sau theo tham số m :	
– x3 + 3x2 + 3 – m = 0
Bài 2: (3 điểm)
1) Giải phương trình sau: 
2) Tính tích phân sau: 
3) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 – 8x2 + 16 trên đoạn [ -1 ; 3] 
Bài 3: (1 điểm) 
 Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc giữa cạnh bên với mặt đáy bằng j. Tính thể tích khối chóp S.ABCD theo a và j.
II. PHẦN RIÊNG (3 điểm)
Thí sinh học chương trình nào thì chỉ được làm phần dành riêng cho chương trình đó (phần 1 hoặc phần 2)
1) Theo chương trình cơ bản:
Bài 4:(2 điểm)
 Trong không gian Oxyz, cho các điểm M(2; 5; -3), N(4; -3; 1) và 
 mặt phẳng : x – 2y – z + 1 = 0
 1) Viết phương trình mặt phẳng (P) đi qua hai điểm M, N và vuông góc với mặt phẳng .
2) Viết phương trình mặt cầu (S) đường kính MN.
Bài 5:(1 điểm) 
 Cho số phức z = (2 – 3i)(1 + 2i) – 5 + 3i. Xác định phần thực, phần ảo và tính môđun số phức z.
2) Theo chương trình nâng cao: 
Bài 4:(2 điểm)
 Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(– 1; –2; 3), B(2; – 3; – 1), C(– 3; 2; – 1), D(– 2; 0; – 3).
 1) Chứng minh A, B, C, D là bốn đỉnh của một tứ diện. Tính thể tích khối tứ diện ABCD.
 2) Viết phương trình của mặt phẳng (BCD).
 3) Viết phương trình mặt cầu (S) tâm A và tiếp xúc với mặt phẳng (BCD). Tìm tọa độ tiếp điểm.
Bài 5:(1 điểm) Tính (1 + i)15

Tài liệu đính kèm:

  • docDE THI.doc