Đề tham khảo ôn thi tốt nghiệp thpt 2010 môn tóan

Đề tham khảo ôn thi tốt nghiệp thpt 2010 môn tóan

Câu I ( 3,0 điểm )

Cho hàm số y = 2x + 1/ x- 1 có đồ thị (C)

1.Khảo sát sự biến thiên và vẽ đồ thị (C).

2.Viết phương trình tiếp tuyến với đồ thị (C) tại giao điểm của đồ thị với trục Ox

 

doc 4 trang Người đăng haha99 Lượt xem 946Lượt tải 0 Download
Bạn đang xem tài liệu "Đề tham khảo ôn thi tốt nghiệp thpt 2010 môn tóan", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
TRƯỜNG THPT HOÀNG DIỆU 
ĐỀ THAM KHẢO ÔN THI TỐT NGHIỆP THPT 2010 
MÔN TÓAN 
Thời gian làm bài: 150 phút 
I.Phần chung cho tất cả thí sinh ( 7 điểm )
Câu I ( 3,0 điểm )
Cho hàm số có đồ thị (C)
1.Khảo sát sự biến thiên và vẽ đồ thị (C).
2.Viết phương trình tiếp tuyến với đồ thị (C) tại giao điểm của đồ thị với trục Ox
Câu II ( 3,0 điểm ) 
1.Giải phương trình : 
 2.Tính tích phân : 
3. Tìm GTLN, GTNN của hàm số sau
 trên 
Câu III ( 1,0 điểm ) 
Cho khối chóp S.ABC có đáy ABC là tam giác vuông tại B,cạnh AB = a,BC=2a. SA vuông góc với mặt phẳng (ABC) và SA = .Gọi A/ và B/ lần lượt trung điểm của SA và SB.Mặt phẳng (CA/B/) chia hình chóp thành hai khối đa diện tính thể tích của hai khối đa diện đó
II.PHẦN RIÊNG ( 3 điểm ) 
1.Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) 
Trong không gian Oxyz cho mặt phẳng (): 2x – y – z - 1 = 0 và đường thẳng 
(d): 
1.Tìm giao điểm của ( d) và ()
2.Viết phương trình mặt cầu tâm I (-1;1;5) và tiếp xúc 
Câu V.a ( 1,0 điểm ) : 
Giải phương trình sau trên tập số phức: x2 – 6x + 29 = 0.
2.Theo chương trình nâng cao
Câu IVb/.(2 điểm).
Trong không gian Oxyz, cho mặt phẳng (P): 2x + y + z +1 = 0 và đường thẳng 
 (D): .
a) Viết phương trình đường thẳng (D’) là hình chiếu vuông góc của (D) trên mp(P).
b) Tính khoảng cách từ điểm M(0;1;2) đến đường thẳng (D).
Câu Vb/.(1điểm).
Giải phương trình: z2- 2(2+i)z+(7+4i)=0.
HẾT.
HƯỚNG DẪN CHẤM 
CÂU 
Câu I
(3 điểm)
1.(2,0 điểm)
a)TX Đ 
b)sự biến thiên
*Chiều biến thiên: 
*Chiều biến thiên
y/ không xác định tại x = 1;y/ luôn âm với mọi 
Hàm số luôn nghịch biến trên các khoảng
*Cực trị 
Hàm số không có cực trị 
* Tiệm cận 
nên x= -1 là tiệm cận đứng 
Nên y = 2 là tiệm cận ngang 
* Bảng biến thiên:
x
 1 
y
 2
 2
*Đồ thị :
Đồ thị cắt ox tại điểm và cắt oy tại điểm (0;-1)
Đồ thị nhận giao điểm hai điểm của hai đường tiệm cận làm tâm đối xứng
Vẽ đồ thị :
2.( 1 điểm) 
*Tọa độ giao điểm của đồ thị ( C ) với trục Ox là M (
*y/ ( = 
* Phương trình tiếp tuyến tại M là y = 
Câu II 
( 3,0 điểm ) 
1.(1,0 điểm )
*Chia hai vế phương trình cho 4x : 6- 13+ 6 = 0 
*Đặt t = . Điều kiện t > 0 được phương trình bậc hai 
*Hai nghiệm hoặc t = (hai nghiệm thỏa mãn điều kiện )
*Nghiệm của phương trình (1): là x = -1 hay x = 1
2.(1,0 điểm ) 
Đặt t = 2 - sin2x 
Đổi cận : 
I= 
3.(1 điểm )
( loại) và x= -2
Vậy 
Câu III 
( 1.điểm )
*Hình vẽ 
*
* suy ra 
Suy ra thể tích khối đa diện ABCA/B/ là 
Câu IV.a 
( 2,0 điểm ) 
1.( 1 điểm )
Phương trình tham số của (d ) , 
Tọa độ giao điểm giữa đường thẳng và mặt phẳng là 
2.(1 điểm)
* Bán kính của mặt cầu R= 
* Áp dụng công thức khoảng cách tính 
*
* Phương trình mặt cầu là 
Câu V.a
( 1,0 điểm )
* Tính được 
*
Phương trình có hai nghiệm 
Câu IVb
( 2 điểm)
1(1.điểm)
*(D’) = (P) Ç (Q)
((Q) là mặt phẳng chứa (D) và ^ (P))
*(Q) qua A (1;4;-1) và có một VTPT: 
*(Q): x - y – z + 2 = 0
*(D’): (t )
2.( điểm)
+Đường thẳng (D) qua điểm A(1;4;-1) và có VTCP: 
+Ta có: và 
Câu V.b
( 1,0 điểm )
Ta có: ’=-35-12i. ta tìm các căn bậc hai x+yi của ’:
(x+yi)2=-35-12i. 
Do đó ta giải được 2 căn bậc hai là: -(1-6i), 1-6i 
nên phương trình có hai nghiệm: z1= 3-4i và z2= 2+2i.

Tài liệu đính kèm:

  • doc33724DEONTHITNTHPT-TOAN-2010hoangdieu.doc