Đề 39 thi thử đại học lần thứ nhất môn toán – khối A năm học 2009 - 2010

Đề 39 thi thử đại học lần thứ nhất môn toán – khối A năm học 2009 - 2010

Câu 1: Cho hàm số : y = x3 - 3mx2 + 3(m2 - 1)x - (m2 - 1) (1)

 a, Với m = 0 , khảo sát sự biến thiên và vẽ đồ thị hàm số (1) .

 b, Tìm m để đồ thị hàm số (1) cắt trục Ox tại ba điểm phân biệt có hoành độ dương.

 

doc 8 trang Người đăng haha99 Lượt xem 956Lượt tải 0 Download
Bạn đang xem tài liệu "Đề 39 thi thử đại học lần thứ nhất môn toán – khối A năm học 2009 - 2010", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 SỞ GD&ĐT NGHỆ AN ĐỀ THI THỬ ĐẠI HỌC LẦN THỨ NHẤT
Trường THPT Anh Sơn III Môn Toán – Khối A
 Năm học 2009-2010-Thời gian 180 phút 
Phần dành chung cho tất cả các thí sinh (7 điểm)
Câu 1: Cho hàm số : y = (1)
 a, Với m = 0 , khảo sát sự biến thiên và vẽ đồ thị hàm số (1) .
 b, Tìm m để đồ thị hàm số (1) cắt trục Ox tại ba điểm phân biệt có hoành độ dương. 
Câu 2: a, Giải phương trình : sin2x + (1 + 2cos3x)sinx - 2sin(2x+) = 0
 b, Xác định a để hệ phương trình sau có nghiệm duy nhất : 
Câu 3 : Tìm : 
Câu 4 : Cho lăng trụ đứng có thể tích V. Các mặt phẳng (cắt nhau . tại O. Tính thể tích khối tứ diện O.ABC theo V.
Câu 5 : Cho x,y,z là các số thực dương . Chứng minh rằng :
 P = 12
Phần riêng (3 điểm): Thí sinh chỉ làm một trong hai phần (phần A hoặc B )
A. Theo chương trình chuẩn
Câu 6a : a, Cho đường tròn (C) có phương trình : và đường thẳng 
 (d) có phương trình : x + y – 2 = 0
 Chứng minh rằng (d) luôn cắt (C) tại hai điểm phân biệt A,B . Tìm toạ độ điểm C trên đường tròn . . . (C) sao cho diện tích tam giác ABC lớn nhất. 
 b, Trong không gian với hệ toạ độ Oxyz cho điểm A(1;2;3)và hai đường thẳng có phương trình :
 Viết phương trình đường thẳng ()đi qua điểm A và cắt cả hai đường thẳng(d), (d).
Câu 7a : Tìm số hạng không chứa x trong khai triển :
 ( với x > 0 )
B . Theo chương trình nâng cao 
Câu 6b : a, Viết phương trình đường thẳng chứa các cạnh của tam giác ABC biết B(2;-1) , đường cao và . . đường phân giác trong qua đỉnh A,C lần lượt là : 3x -4y + 27 =0 và x + 2y – 5 = 0 .
 b, Trong không gian với hệ toạ độ Oxyz cho A(2;4;1) , B(3;5;2) và đường thẳng () có phương 
 trình : 
 Tìm toạ độ điểm M nằm trên đường thẳng ()sao cho : MA + MB nhỏ nhất .
Câu 7b : Cho . Tính hệ số a. 
 ------ Hết. --------
Họ và tên.. Số báo danh
ĐÁP ÁN – THANG ĐIỂM 
ĐỀ THI THỬ ĐẠI HỌC NĂM 2010 
Mụn: TOÁN; Khối A 
(Đáp án - thang điểm gồm 07 trang) 
 SỞ GD-ĐT NGHỆ AN
TRƯỜNG THPT ANH SƠN 3
ĐÁP ÁN – THANG ĐIỂM
Cõu
Đáp án
Điểm
Cõu 1
(2 điểm)
a. (1.0 điểm) Khảo sát
Với m=0, ta cú: y=x3-3x+1
TXĐ D=R
y’=3x2-3; y’=0 
0,25
BBT
x
	-1	1	
y’
	+	0	-	0	+
y
	3	
	 -1
0,25
Hs đồng biến trên khoảng (;-1) và (1;), nghịch biến trờn (-1;1)
Hs đạt cực đại tại x=-1 và ycđ=3, Hs đạt cực tiểu tại x=1 và yct=-1
0,25
y
-2
1
-1
-1
1
2
3
x
0
Đồ thị : cắt Oy tại điểm A(0;1)
và đi qua các điểm B(-2;-1), C(2;3)
Đồ thị nhận điểm A(0;1) làm tâm đối xứng
0,25
b. (1.0 điểm) Tỡm m để 
Ta cú y’= 3x2-6mx+3(m2-1)
y’=0 
0,25
Để đồ thị hàm số cắt Ox tại 3 điểm phân biệt có hoành độ dương thỡ ta phải cú:
0,25
Vậy giỏ trị m cần tỡm là: 
0,25
Cõu 2
(2.0 điểm)
a. (1.0 điểm) Giải phương trỡnh
Sin2x + (1+2cos3x)sinx – 2sin(2x + )=0
sin2x + sinx + sin4x – sin2x = 1 – cos(4x + )
0,25
sinx + sin4x = 1+ sin4x
0,25
sinx = 1
0,25
x = + k2, kZ
0,25
b. (1.0 điểm) 
Nhận xột: Nếu (x;y) là nghiệm thỡ (-x;y) cũng là nghiệm của hệ
Suy ra, hệ cú nghiệm duy nhất khi và chỉ khi x =0
+ Với x = 0 ta cú a =0 hoặc a = 2
0,25
-Với a = 0, hệ trở thành: 
Từ (2) 
0,25
( I ) cú nghiệm TM 
0,25
-Với a=2, ta cú hệ: 
 Dễ thấy hệ cú 2 nghiệm là: (0;-1) và (1;0) khụng TM
Vậy a = 0
0,25
Cõu 3
(1.0 điểm)
Ta cú 
0,25
0,25
0,25
0,25
Cõu 4
(1.0 điểm)
Gọi I = AC’A’C, J = A’BAB’
 O là điểm cần tỡm	
Ta cú O là trọng tõm tam giỏc BA’C
0,25
Gọi H là hỡnh chiếu của O lờn (ABC)
Do ABC là hỡnh chiếu vuụng gúc của BA’C trờn (ABC) nờn H là trọng tõm ABC
0,25
Gọi M là trung điểm BC. Ta có: 
0,25
0,25
Cõu 5
(1.0 điểm)
Ta cú: 4(x3+y3)(x+y)3 , với x,y>0
Thật vậy: 4(x3+y3)(x+y)3 4(x2-xy+y2)(x+y)2 (vỡ x+y>0)
 3x2+3y2-6xy0 (x-y)20 luôn đúng
Tương tự: 4(x3+z3)(x+z)3 
 4(y3+z3)(y+z)3 
0,25
Mặt khỏc: 
0,25
0,25
Dấu ‘=’ xảy ra 
Vậy P12, dấu ‘=’ xảy ra x = y = z =1
0,25
Cõu 6a
(2.0 điểm)
Chương trỡnh chuẩn
a. (1.0 điểm)
(C) cú tõm I(2;2), bỏn kớnh R=2
Tọa độ giao điểm của (C) và (d) là nghiệm của hệ:
C
Hay A(2;0), B(0;2)
0,25
Hay (d) luôn cắt (C ) tại hai điểm phân biệt A,B
0,25
Ta cú (H là hỡnh chiếu của C trờn AB)
Dễ dàng thấy CH max 
0,25
Hay : y = x với 
Vậy thỡ 
0,25
b. (1.0 điểm)
Nhận xột: M(d1) và M(d2)
Giả sử 
Vỡ Id1 I(2t-1; -1-2t; 2+t)
 Hd2 H(4t’; -2; 3t’)
0,25
0,5
Vậy phương trỡnh đường thẳng đi qua 2 điểm I và H là:
 hoặc là: 
0,25
Cõu 7a
(1.0 điểm)
Ta cú: 
0.25
Để số hạng thứ k không chứa x thỡ:
0.5
Vậy số hạng khụng chứa x trong khai triển là: 
0,25
Cõu 6b
(2.0 điểm)
Chương trỡnh nõng cao
a. (1.0 điểm)
Phươngtrỡnh đường thẳng chứa cạnh BC: 
Tọa độ điểm C là nghiệm của hệ: 
0,25
Gọi KAC, KBC, K2 theo thứ tự là hệ số góc của các đường thẳng AC, BC, d2 
Ta cú: 
0,25
Vậy pt đường thẳng AC đi qua C và có hệ ssó góc k=0 là: y = 3
+ Tọa độ điểm A là nghiệm của hệ:
0,25
 Pt cạnh AB là: 
Vậy AB: 4x+7y-1=0
 AC: y=3
 BC: 4x+3y-5=0
0,25
b. (1.0 điểm)
+ Xét vị trí tương đối giữa AB và , ta cú:
 cắt AB tại K(1;3;0)
Ta cú A, B nằm về cùng phía đối với 
0,25
Gọi A’ là điểm đối xứng với A qua và H là hỡnh chiếu của A trờn .
 H( 1;t;-3+t) (vỡ PTTS của : )
Ta cú 
0,25
Gọi M là giao điểm của A’B và d
0,25
Lấy điểm N bất kỳ trên 
Ta cú MA+MB=MB+MA’=A’BNA+NB
Vậy 
0,25
Cõu 7b
(1.0 điểm)
Ta cú: 
(1+x+x2)12 = [(1+x)+x2 ]12 = =
0,25
=
0,25
Chỉ có 3 số hạng đầu chứa x4 
0,25
0,25

Tài liệu đính kèm:

  • docDeHD TS DH Toan 2010 so 39.doc