Đề 10 Ôn thi tốt nghiệp thpt môn Toán. Năm học : 2008 - 2009

Đề 10 Ôn thi tốt nghiệp thpt môn Toán. Năm học : 2008 - 2009

Câu I ( 3,0 điểm )

 Cho hàm số có đồ thị (C)

a) Khảo sát sự biến thiên và vẽ đồ thị (C).

b) Cho họ đường thẳng với m là tham số . Chứng minh rằng luôn cắt đồ thị (C) tại một điểm cố định I .

 

doc 3 trang Người đăng haha99 Lượt xem 1076Lượt tải 0 Download
Bạn đang xem tài liệu "Đề 10 Ôn thi tốt nghiệp thpt môn Toán. Năm học : 2008 - 2009", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ĐỀ 10
( Thời gian làm bài 150 phút )
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) 
 Cho hàm số có đồ thị (C)
a) Khảo sát sự biến thiên và vẽ đồ thị (C).
b) Cho họ đường thẳng với m là tham số . Chứng minh rằng luôn cắt đồ thị (C) tại một điểm cố định I .
 Câu II ( 3,0 điểm ) 
a) Giải bất phương trình 
b) Cho với f là hàm số lẻ. Hãy tính tích phân : I = .
c) Tìm giá trị lớn nhất và giá trị nhỏ nhất nếu có của hàm số .
Câu III ( 1,0 điểm ) 
Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh bằng a . Hình chiếu vuông góc của A’ xuống mặt phẳng (ABC) là trung điểm của AB . Mặt bên (AA’C’C) tạo với đáy một góc bằng . Tính thể tích của khối lăng trụ này .
II . PHẦN RIÊNG ( 3 điểm ) 
Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó. 
Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Trong không gian với hệ tọa độ Oxyz .Viết phương trình mặt phẳng (P) qua O , vuông góc với mặt 
phẳng (Q) : và cách điểm M(1;2;) một khoảng bằng . 
Câu V.a ( 1,0 điểm ) : 
 Cho số phức . Tính giá trị của .
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng (d ) : và mặt phẳng
 (P) : .
 a. Viết phương trình mặt cầu có tâm nằm trên (d) , bán kính bằng 3 và tiếp xúc với (P) .
 b. Viết phương trình đường thẳng () qua M(0;1;0) , nằm trong (P) và vuông góc với 
 đường thẳng (d) .
Câu V.b ( 1,0 điểm ) : 
 Trên tập số phức , tìm B để phương trình bậc hai có tổng bình phương hai nghiệm bằng . 
 . . . . . . . .Hết . . . . . . .
HƯỚNG DẪN
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
Câu I ( 3,0 điểm ) 
 a) 2đ
x
 0 
 + 0 0 +
 0 
 b) 1đ Ta có : Phương trỉnh hoành độ điểm chung của (C) và :
 Khi x = 2 ta có 
 Do đó luôn cắt (C) tại điểm cố định I(2;16 ) .
 Câu II ( 3,0 điểm ) 
 a) 1đ Vì nên do 
 b) 1đ Đổi biến : u = .
 Đổi cận : § x = 
 § x = 0 
 Vì f là hàm số lẻ nên 
 Khi đó : I = 
 c) 1đ Tập xác định 
 , ta có : (1)
 (2)
 Từ (1) và (2) suy ra : 
 Vậy : 
Câu III ( 1,0 điểm ) 
 Gọi H là trung điểm của AB . Ta có A’H (ABC) .Kẻ HE AC thì là góc 
 giữa hai mặt (AA’C’C) và (ABC) . Khi đó : A’H = HE = ( bằng đường cao ABC) . Do đó : 
II . PHẦN RIÊNG ( 3 điểm ) 
1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Phương trình mặt phẳng (P) qua O nên có dạng : Ax + By + Cz = 0 với 
 Vì (P) (Q) nên 1.A+1.B+1.C = 0 A+B+C = 0 (1)
 Theo đề : 
 d(M;(P)) = (2)
 Thay (1) vào (2) , ta được : 8AB+5
 § thì (P) : 
 § . Chọn A = 5 , B = thì (P) : 
 Câu V.a ( 1,0 điểm ) : 
 Ta có : nên 
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
 a) 1đ 
 Tâm mặt cầu là nên I(1+2t;2t;) 
 Theo đề : Mặt cầu tiếp xúc với (P) nên 
 § t = 0 thì I(1;0;) 
 § t = thì I(;) 
 b) 1đ VTCP của đường thẳng (d) là 
 VTPT của mặt phẳng là 
 Gọi là VTCP của đường thẳng () thì vuông góc với do đó ta chọn 
 .
 Vậy 
Câu V.b ( 1,0 điểm ) : 
 Gọi là hai nghiệm của phương trình đã cho và với .
Theo đề phương trình bậc hai có tổng bình phương hai nghiệm bằng . 
 nên ta có : hay hay 
 Suy ra : .
 Hệ phương trình có nghiệm (a;b) là . Vậy : , 

Tài liệu đính kèm:

  • docMon luyen toanQuoc Hoc Hue 10.doc