Bài tập Nguyên hàm đủ dạng

Bài tập Nguyên hàm đủ dạng

I. Tìm nguyên hàm bằng định nghĩa và các tính chất

1/ Tìm nguyên hàm của các hàm số.

 

doc 2 trang Người đăng ngochoa2017 Lượt xem 1348Lượt tải 0 Download
Bạn đang xem tài liệu "Bài tập Nguyên hàm đủ dạng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
I. Tìm nguyên hàm bằng định nghĩa và các tính chất
1/ Tìm nguyên hàm của các hàm số.
1. f(x) = x2 – 3x + ĐS. F(x) = 
2. f(x) = ĐS. F(x) = 
. f(x) = ĐS. F(x) = lnx + + C 
4. f(x) = ĐS. F(x) = 
5. f(x) = ĐS. F(x) = 
6. f(x) = ĐS. F(x) = 
7. f(x) = ĐS. F(x) = 
8. f(x) = ĐS. F(x) = 
9. f(x) = ĐS. F(x) = x – sinx + C 
10. f(x) = tan2x ĐS. F(x) = tanx – x + C 
11. f(x) = cos2x ĐS. F(x) = 
12. f(x) = (tanx – cotx)2 ĐS. F(x) = tanx - cotx – 4x + C
13. f(x) = ĐS. F(x) = tanx - cotx + C 
14. f(x) = ĐS. F(x) = - cotx – tanx + C 
15. f(x) = sin3x ĐS. F(x) = 
16. f(x) = 2sin3xcos2x ĐS. F(x) = 
17. f(x) = ex(ex – 1) ĐS. F(x) = 
18. f(x) = ex(2 + ĐS. F(x) = 2ex + tanx + C 
19. f(x) = 2ax + 3x ĐS. F(x) = 
20. f(x) = e3x+1 ĐS. F(x) = 
2/ Tìm hàm số f(x) biết rằng 
1. f’(x) = 2x + 1 và f(1) = 5 ĐS. f(x) = x2 + x + 3 
2. f’(x) = 2 – x2 và f(2) = 7/3 ĐS. f(x) = 
3. f’(x) = 4 và f(4) = 0 ĐS. f(x) = 
4. f’(x) = x - và f(1) = 2 ĐS. f(x) = 
5. f’(x) = 4x3 – 3x2 + 2 và f(-1) = 3 ĐS. f(x) = x4 – x3 + 2x + 3
6. f’(x) = ax + ĐS. f(x) = 
3.Phương pháp đổi biến số: Tìm nguyên hàm của các hàm số sau:
1. 2. 3. 4. 
5. 6. 7. 8. 
9. 10. 11. 12. 
13. 14. 15. 16. 
17. 18. 19. 20. 
21. 22. 23. 24. 
25. 26. 27. 28. 
29. 30. 31. 32. 
2. Phương pháp lấy nguyên hàm từng phần: Tìm nguyên hàm của các hàm số sau:
1. 2. 3. 4
5. 6. 7. 8. 
9. 10. 11. 12. 
13. 14. 15. 16. 
17. 18. 19. 20. 
21. 22. 23. 24. 

Tài liệu đính kèm:

  • docbai tap nguyen ham du dang.doc