I. Tìm nguyên hàm bằng định nghĩa và các tính chất
1/ Tìm nguyên hàm của các hàm số.
I. Tìm nguyên hàm bằng định nghĩa và các tính chất 1/ Tìm nguyên hàm của các hàm số. 1. f(x) = x2 – 3x + ĐS. F(x) = 2. f(x) = ĐS. F(x) = . f(x) = ĐS. F(x) = lnx + + C 4. f(x) = ĐS. F(x) = 5. f(x) = ĐS. F(x) = 6. f(x) = ĐS. F(x) = 7. f(x) = ĐS. F(x) = 8. f(x) = ĐS. F(x) = 9. f(x) = ĐS. F(x) = x – sinx + C 10. f(x) = tan2x ĐS. F(x) = tanx – x + C 11. f(x) = cos2x ĐS. F(x) = 12. f(x) = (tanx – cotx)2 ĐS. F(x) = tanx - cotx – 4x + C 13. f(x) = ĐS. F(x) = tanx - cotx + C 14. f(x) = ĐS. F(x) = - cotx – tanx + C 15. f(x) = sin3x ĐS. F(x) = 16. f(x) = 2sin3xcos2x ĐS. F(x) = 17. f(x) = ex(ex – 1) ĐS. F(x) = 18. f(x) = ex(2 + ĐS. F(x) = 2ex + tanx + C 19. f(x) = 2ax + 3x ĐS. F(x) = 20. f(x) = e3x+1 ĐS. F(x) = 2/ Tìm hàm số f(x) biết rằng 1. f’(x) = 2x + 1 và f(1) = 5 ĐS. f(x) = x2 + x + 3 2. f’(x) = 2 – x2 và f(2) = 7/3 ĐS. f(x) = 3. f’(x) = 4 và f(4) = 0 ĐS. f(x) = 4. f’(x) = x - và f(1) = 2 ĐS. f(x) = 5. f’(x) = 4x3 – 3x2 + 2 và f(-1) = 3 ĐS. f(x) = x4 – x3 + 2x + 3 6. f’(x) = ax + ĐS. f(x) = 3.Phương pháp đổi biến số: Tìm nguyên hàm của các hàm số sau: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 2. Phương pháp lấy nguyên hàm từng phần: Tìm nguyên hàm của các hàm số sau: 1. 2. 3. 4 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24.
Tài liệu đính kèm: