Giáo án Giải tích 12 CB - Chương IV: Số phức

Giáo án Giải tích 12 CB - Chương IV: Số phức

Tiết PPCT 57

SỐ PHỨC

I. Mục tiêu:

 1. Kiến thức :

- Hiểu được số phức , phần thực phần ảo của nó; hiểu được ý nghĩa hình học của khái niệm môđun, số phức liên hợp, hai số phức bằng nhau.

2. Kĩ năng:

Biết biểu diễn số phức trên mặt phẳng toạ độ

-Xác định được môđun của số phức , phân biệt được phần thực và phần ảo của số phức.

-Biết cách xác định được điều kiện để hai số phức bằng nhau.

3. Tư duy và thái độ :

+ Tư duy:

-Tìm một yếu tố của số phức khi biết các dữ kiện cho trước.

-Biết biểu diễn một vài số phức dẫn đến quỹ tích của số phức khi biết được phần thực hoặc ảo.

+ Thái độ: nghiêm túc , hứng thú khi tiếp thu bài học, tích cực hoạt động.

 

doc 22 trang Người đăng ngochoa2017 Ngày đăng 31/01/2018 Lượt xem 185Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án Giải tích 12 CB - Chương IV: Số phức", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ch­¬ng IV
 SỐ PHỨC
Ngày02 tháng 01 năm2011	
Tiết PPCT 57
SỐ PHỨC
I. Mục tiêu:
 1. Kiến thức :
- Hiểu được số phức , phần thực phần ảo của nó; hiểu được ý nghĩa hình học của khái niệm môđun, số phức liên hợp, hai số phức bằng nhau.
2. Kĩ năng: 
Biết biểu diễn số phức trên mặt phẳng toạ độ
-Xác định được môđun của số phức , phân biệt được phần thực và phần ảo của số phức.
-Biết cách xác định được điều kiện để hai số phức bằng nhau.
3. Tư duy và thái độ :
+ Tư duy:
-Tìm một yếu tố của số phức khi biết các dữ kiện cho trước.
-Biết biểu diễn một vài số phức dẫn đến quỹ tích của số phức khi biết được phần thực hoặc ảo.
+ Thái độ: nghiêm túc , hứng thú khi tiếp thu bài học, tích cực hoạt động.
 	II. Chuẩn bị:
1.Giáo viên: Giáo án , phiếu học tập, bảng phụ.
2.Học sinh: sách giáo khoa, đồ dùng học tập
 	 III. Phương pháp: Gợi mở,vấn đáp,giải quyết vấn đề,đan xen hoạt động nhóm.
 	IV. Tiến trình bài học:
Tiết 1
HOẠT ĐỘNG 
 1.Kiểm tra bài cũ:
Gọi một học sinh giải phương trình bậc hai sau
 A. 	B. 
 2.Bài mới:
HOẠT ĐỘNG 2
Tiếp cận định nghĩa số i
Tg
Hoạt động của giáo viên
Hoạt động của học sinh
Viết bảng
Như ở trên phương trình vô nghiệm trên tập số 
thực. Nhưng trên tập số phức thì phương trình này có nghiệm hay không ?
+ số thoả phương trình 
gọi là số i.
H: z = 2 + 3i có phải là số phức không ? Nếu phải thì cho biết a và b bằng bao nhiêu ?
+ Phát phiếu học tập 1:
+ z = a +bi là dạng đại số của số phức. 
+ Nghe giảng
+ Dựa vào định nghĩa để trả lời
Bài SỐ PHỨC
1.Số i:
2.Định nghĩa số phức: 
*Biểu thức dạng a + bi ,được gọi là một số phức.
Đơn vị số phức z =a +bi:Ta nói a là phần số thực,b là phần số ảo 
Tập hợp các số phức kí hiệu là C:
Ví dụ :z=2+3i
 z=1+(-i)=1-i
Chú ý:
* z=a+bi=a+ib
 HOẠT ĐỘNG 3
Tiếp cận định nghĩa hai số phức bằng nhau
+Để hai số phức z = a+bi và z = c+di bằng nhau ta cần điều kiện gì ?
+ Gv nhắc lại đầy đủ.
+Em nào định nghĩa được hai số phức bằng nhau ?
+Hãy chỉ ra hướng giải ví dụ trên?
+ Số 5 có phải là số phức không ?
+Bằng logic toán để trả lời câu hỏi ngay dưới lớp.
+trả lời câu hỏi ngay dưới lớp.
+ Lên bảng giải ví dụ.
+Trả lời câu hỏi ngay dưới lớp.
3:Số phức bằng nhau:
Định nghĩa:( SGK)
a+bi=c+di
Ví dụ:tìm số thực x,y sao cho
2x+1 + (3y-2)i=x+2+(y+4)i
*Các trường hợp đặc biệt của số phức:
+Số a là số phức có phần ảo bằng 0
a=a+0i
+Số thực cũng là số phức
+Sồ phức 0+bi được gọi là số thuần ảo:bi=0+bi;i=0+i
Tiết 58
HOẠT ĐỘNG 4
Tiếp cận định nghĩa điểm biểu diễn của số phức
cho điểm M (a;b) bất kì,với a, b thuộc R.Ta luôn biểu diễn được điểm M trên hệ trục toạ độ. Liệu ta có biểu diễn được số phức z=a+bi trên hệ trục không và biểu diễn như thế nào ?
+ Điểm A và B được biểu diễn bởi số phức nào?
+Nghe giảng và quan sát.
+Dựa vào định nghĩa để trả lời
4.Biểu diển hình học của số phức
Định nghĩa : (SGK)
Ví dụ :
+Điểm A (3;-1)
được biểu diển số phức 3-i 
+Điểm B(-2;2)được biểu diển số phức-2+2i .
HOẠT ĐỘNG 5
Khắc sâu biểu diễn của số phức:
+ Bảng phụ
+Hãy biểu diễn các số phức 2+i , 2 , 2-3i lên hệ trục tọa độ?
+Nhận xét các điểm biểu diễn trên ?
+quan sát vào bảng phụ để trả lời.
+ lên bảng vẽ điểm biểu diễn
Nhận xét :
+ Các số phức có phần thực a nằm trên đường thẳng x = a.
+Các số phức có phần ảo b nằm trên đường thẳng y= b.
HOẠT ĐỘNG 6
Tiếp cận định nghĩa Môđun của số phức
+Cho A(2;1). Độ dài của vec tơ được gọi là môđun của số phức được biểu diễn bởi điểm A.
+Tổng quát z=a+bi thì môđun của nó bằng bao nhiêu ?
+ Số phức có môđun bằng 0 là số phức nào ?
Vì 
+Phát phiếu học tập 2
+quan sát và trả lời.
+Trả lời ngay dưới lớp
+Trả lời ngay dưới lớp
+Trả lời ngay dưới lớp
5. Mô đun của hai số phức :
Định nghĩa: (SGK)
Cho z=a+bi.
Ví dụ: 
HOẠT ĐỘNG 7
Cũng cố định nghĩa môđun của hai số phức
+Hãy biểu diễn hai số phức sau trên mặt phẳng tọa đô:
Z=3+2i ; z=3-2i
+Nhận xét biểu diễn của hai số phức trên ?
+ Hai số phức trên gọi là hai số phức liên hợp.
+ Nhận xét và z
+chú ý hai số phức liên hợp thì đối xứng qua trục Ox và có môđun bằng nhau.
+Hãy là ví dụ trên
+ Lên bảng biểu diễn.
+ Quan sát hình vẽ hoặc hoặc dùng đại số để trả lời
+phát biểu ngay dưói lớp
6. Số phức liên hợp:
Cho z = a+bi. Số phức liên hợp của z là:
Ví dụ :
1. 
2. 
Nhận xét:
*
*
V.Cũng cố:
+ Học sinh nắm được định nghĩa số phức , hai số phức bằng nhau .
+ Biểu diễn số phức và tính được mô đun của nó.
+Hiểu hai số phức bằng nhau.
+Bài tập về nhà: 1 – 6 trang 133 – 134
VI.Phục lục:
1.Phiếu học tập 1: Ghép mỗi ý ở cột trái với một ý ở cột phải
Số phức
Phần thực và phần ảo
1. 
2. 
3. 
4. 
A. 
B. 
C. 
D. 
E. 
2.Phiếu học tập 2:Tìm số phức biết mô đun bằng 1 và phần ảo bằng 1
A. 	B. 	C. 	D. 
3.Bảng phụ: Dựa vào hình vẽ hãy điền vào chỗ trống.
1. Điểm..biểu diễn cho 2 – i
2. Điểm..biểu diễn cho 0 + i
3. Điểm..biểu diễn cho – 2 + i
4. Điểm..biểu diễn cho 3 + 2i
Ngày02 tháng 01 năm2011	
Tiết PPCT 59
CỘNG, TRỪ VÀ NHÂN SỐ PHỨC
Mục tiêu:
Về kiến thức:
Hs nắm được quy tắc cộng trừ và nhân số phức
Về kỹ năng:
Hs biết thực hiện các phép toán cộng trừ và nhân số phức
Về tư duy thái độ:
Học sinh tích cực chủ động trong học tập, phát huy tính sáng tạo
Có chuẩn bị bài trước ở nhà và làm bài đầy đủ
Chuẩn bị của gv và hs:
Giáo viên: Giáo án, bảng phụ, phiếu học tập
Học sinh: Học bài cũ, làm đầy đủ các bài tập ở nhà. Chuẩn bị bài mới.
Phương pháp:
 Gợi mở, vấn đáp và thảo luận nhóm.
IV Tiến trình bài học:
Ổn định lớp
Kiểm tra bài cũ:
 Câu hỏi: - Hai số phức như thế nào được gọi là bằng nhau?
 Tìm các số thực x,y biết: ( x+1) + ( 2+y )i = 3 + 5i?
Bài mới:
Thời gian
HĐ của Thầy
HĐ của trò
Ghi bảng
* HĐ1: Tiếp cận quy tắc cộng hai số phức:
 - Từ câu hỏi ktra bài cũ gợi ý cho hs nhận xét mối quan hệ giữa 3 số phức 1+2i, 2+3i và 3+5i ?
-Gv hướng dẫn học sinh áp dụng quy tắc cộng hai số phức để giải ví dụ 1
*HĐ2:Tiếp cận quy tắc trừ hai số phức
-Từ câu b) của ví dụ 1giáo viên gợi ý để học sinh phát hiện mối quan hệ giữa 3 số phức 3-2i, 2+3i và 1-5i
-Gv hướng dẫn học sinh áp dụng quy tắc cộng hai số phức để giải ví dụ 2
*Học sinh thực hành làm bài tập ở phiếu học tập số 1
*HĐ3:Tiếp cận quy tắc nhân hai số phức
-Giáo viên gợi ý cho học sinh phát hiện quy tắc nhân hai số phức bằng cách thực hiện phép nhân (1+2i).(3+5i) 
 =1.3-2.5+(1.5+2.3)i
 = -7+11i
-Gv hướng dẫn học sinh áp dụng quy tắc cộng hai số phức để giải ví dụ 3
*Học sinh thực hành làm bài tập ở phiếu học tập số 2
-Từ việc nhận xét mối quan hệ giữa 3 số phức hs phát hiện ra quy tắc cộng hai số phức
-Học sinh thực hành bài giải ở ví dụ 1(một học sinh lên bảng giải, cả lớp nhận xét bải giải ) 
-Từ việc nhận xét mối quan hệ giữa 3 số phức hs phát hiện ra quy tắc trừ hai số phức
Học sinh thực hành bài giải ở ví dụ 2 (một học sinh lên bảng giải, cả lớp nhận xét bải giải ) 
-Thông qua gợi ý của giáo viên, học sinh rút ra quy tắc nhân hai số phức và phát biểu thành lời
cả lớp cùng nhận xét và hoàn chỉnh quy tắc .
-Học sinh thực hành bài giải ở ví dụ 3 (một học sinh lên bảng giải, cả lớp nhận xét bải giải 
Phép cộng và trừ hai số phức: 
Quy tắc cộng hai số phức:
VD1: thực hiện phép cộng hai số phức
a) (2+3i) + (5+3i) = 7+6i
( 3-2i) + (-2-3i) = 1-5i
Quy tắc trừ hai số phức:
VD2: thực hiện phép trừhai số phức
a) (2+i) -(4+3i) = -2-2i
( 1-2i) -(1-3i) = i
2.Quy tắc nhân số phức
Muốn nhân hai số phức ta nhân theo quy tắc nhân đa thức rồi thay i2 = -1
Ví dụ 3 :Thực hiện phép nhân hai số phức
(5+3i).(1+2i) =-1+13i
(5-2i).(-1-5i) =-15-23i
Chú ý :Phép công và phép nhân các số phức có tất cả các tính chất của phép cộng và phép nhân các số thực
Phiếu học tập số 1Cho 3 số phức z1 = 2+3i, z2 = 7+ 5i, z3 = -3+ 8i. Hãy thực hiện các phép toán sau:
z1 + z2 + z3 = ?
z1 + z2 - z3 = ?
z1 - z3 + z2 =?
Nhận xét kết quả ở câu b) và c) ?
Phiếu học tập số 2 . Hãy nối một dòng ở cột 1 và một dòng ở cột 2 để có kết quả đúng?
3.( 2+ 5i) ?
2i.( 3+ 5i) ?
– 5i.6i ?
( -5+ 2i).( -1- 3i) ?
30
6 + 15i
11 + 13i
–10 + 6i
5 – 6 i2 
4.Cũng cố toàn bài
Nhắc lại các quy tắc cộng ,trừ và nhân các số phức
5.Dặn dò Các em làm các bài tập trang 135-136 SGK
Ngày02 tháng 01 năm2011	
Tiết PPCT 60
BÀI TẬP VỀ CỘNG, TRỪ VÀ NHÂN SỐ PHỨC
Mục tiêu:
Về kiến thức:
Hs nắm được quy tắc cộng trừ và nhân số phức
Về kỹ năng:
Hs biết thực hiện các phép toán cộng trừ và nhân số phức
Về tư duy thái độ:
Học sinh tích cực chủ động trong học tập, phát huy tính sáng tạo
Có chuẩn bị bài trước ở nhà và làm bài đầy đủ
Chuẩn bị của gv và hs:
Giáo viên: Giáo án, bảng phụ, phiếu học tập
Học sinh: Học bài cũ, làm đầy đủ các bài tập ở nhà. Chuẩn bị bài mới.
Phương pháp:
 Gợi mở, vấn đáp và thảo luận nhóm.
IV Tiến trình bài học:
Ổn định lớp
Kiểm tra bài cũ:
 Câu hỏi: nêu quy tắc cộng, quy tắc trừ các số phức
Áp dụng: thực hiện phép cộng,trừ hai số phức
a) (2+3i) + (5-3i) = ?
( 3-2i) - (2+3i) = ?
 Câu hỏi: nêu quy tắc nhân các số phức
Áp dụng: thực hiện phép nhân hai số phức (2+3i) .(5-3i) = ?
Bài mới:
Thời gian
HĐ của Thầy
HĐ của trò
Ghi bảng
* HĐ1: Thực hành quy tắc cộng ,trừ các số phức:
 -Gv hướng dẫn học sinh áp dụng quy tắc cộng,trừ các số phức để giải bài tập 1 trang135-SGK
-Gv hướng dẫn học sinh áp dụng quy tắc cộng,trừ các số phức để giải bài tập 2 trang136-SGK
* HĐ2: Thực hành quy tắc nhân các số phức:
 -Gv hướng dẫn học sinh áp dụng quy tắc nhân các số phức để giải bài tập 3 trang136-SGK
*HĐ3 :Phát triển kỹ năng cộng trừ và nhân số phức
--Gv hướng dẫn học sinh áp dụng quy tắc nhân các số phức để giải bài tập 4 trang136-SGK
*Học sinh thực hành giải bài tập ở phiếu học tập số 1
--Gv hướng dẫn học sinh áp dụng quy tắc nhân các số phức để giải bài tập 4 trang136-SGK
*Học sinh thực hành giải bài tập ở phiếu học tập số 2
Chia nhóm thảo luận và so sánh kết quả
-Học sinh thực hành bài giải ở bài tập 1 trang135-SGK(một học sinh lên bảng giải, cả lớp nhận xét và hoàn chỉnh bài giải ) 
-Học sinh thực hành bài giải ở bài tập 2 trang136-SGK(một học sinh lên bảng giải, cả lớp nhận xét và hoàn chỉnh bài giải ) 
-Học sinh thực hành bài giải ở bài tập 3 trang136-SGK(một học sinh lên bảng giải, cả lớp nhận xét và hoàn chỉnh bài giải ) 
-Học sinh thực hành bài giải ở bài tập 4 trang136-SGK(một học sinh lên bảng giải, cả lớp nhận xét và hoàn chỉnh bài giải ) 
-Học sinh thực hành bài giải ở bài tập 4 trang136-SGK(một học sinh lên bảng giải, cả lớp nhận xét và hoàn chỉnh bài giải )
1 thực hiện các phép tính
a) (3-+5i) +(2+4i) = 5 +9i
b) ( -2-3i) +(-1-7i) = -3-10i 
c) (4+3i) -(5-7i) = -1+10i
( 2-3i) -(5-4i) = -3 + i
2.Tính a+b, a-b với
a)a = 3,b = 2i b)a = 1-2i,b = 6i
c)a = 5i,b =- 7i d)a = 15,b =4-2i
giải
a)a+b = 3+2i a-b = 3-2i
b)a+b = 1+4i a-b = 1-8i
c)a+b =-2i a-b = 12i
d)a+b = 19-2i a-b = 11+2i
3.thực hiện các phép tính
a) (3-2i) .(2-3i) = -13i
b) ( 1-i) +(3+7i) = 10+4i 
c) 5(4+3i) = 20+15i
 ( -2-5i) 4i = -8 + 20i
4.Tính i3, i4 i5
Nêu cách tính in với n là số tự nhiên tuỳ ý 
giải
i3=i2.i =-i
i4=i2.i 2=-1
i5=i4.i =i
Nếu n = 4q +r, 0 £ r < 4 thì in = ir
5.Tính
(2+3i)2=-5+12i
(2+3i)3=-46+9i
4.Cũng cố toàn bài 
Nhắc lại quy tắc cộng, trừ và nhân các số phức
5.Btập về  ... ét
Bài 4 
a/(3-2i)z +(4+5i)=7+3i
ó(3-2i)z=3 – 2i
óz = =1
b/ 
(1+3i)z-(2+5i)=(2+i)z
ó(-1+2i)z=(2+5i)
ó z= 
c/ 
	 HOẠT ĐỘNG V Củng cố 	( Phát phiếu học tập ) 10’
	Câu 1 Tìm a,b R sao cho (a – 2bi) (2a+bi) = 2+
	Câu 2 Cho z1 = 9y2 – 4 – 10xi3 và z2 = 8y2 +20i19 . Tìm x,yR sao cho z1 = z2 
	Các nhóm thảo luận và đại diện nhóm lên bảng giải 
	Gv nhận xét và kết luận
. Củng cố toàn bài : Nắm kỹ các phép toán trên số phức
.Dặn dò ,bài tập : Làm tất cả các bài tập trong sách bài tập
Ngày02 tháng 01 năm2011	
Tiết PPCT 63
PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC
I.Mục tiêu: 
 1.Về kiến thức: Giúp học sinh nắm được: Căn bậc hai của một số thực âm; cách giải phương trình bậc hai với hệ số thực trong mọi trường hợp đối với Δ 
 2.Về kĩ năng: Học sinh biết tìm được căn bậc 2 của một số thực âm và giải phương trình bậc hai với hệ số thực trong mọi trường hợp đối với Δ
 3.Về tư duy và thái độ 
 	- Rèn kĩ năng giải phương trình bậc hai trong tập hợp số phức.
 	- Rèn tính cẩn thận ,chính xác 
II.Chuẩn bị của giáo viên và học sinh: 
 	* Giáo viên: Soạn giáo án, phiếu học tập ,đồ dùng dạy học .
 	* Học sinh: Xem nội dung bài mới, dụng cụ học tập 
III.Phương pháp: 
* Gợi mở + nêu vấn đề đan xen hoạt động nhóm.
IV.Tiến trình bài học: 
 1.Ổn định lớp. (1’)
 2. Kiểm tra bài cũ: (5’)
Câu hỏi 1:Thế nào là căn bậc hai của một số thực dương a ?
Câu hỏi 2:Viết công thức nghiệm của phương trình bậc hai ?
 3.Bài mới :
T/gian
Hoạt động của GV
Hoạt động của HS
Ghi bảng
(12’)
 Hoạt động 1:Tiếp cận khái niệm căn bậc 2 của số thực âm
* Ta có: với a > 0 có 2 căn bậc 2 của a là b = ± (vì b² = a)
* Vậy a < 0 có căn bậc 2 của a không ?
Để trả lời cho câu hỏi trên ta thực hiện ví dụ sau: 
Ví dụ 1: Tìm x sao cho 
x² = -1
Vậy số âm có căn bậc 2 không?
Þ -1 có 2 căn bậc 2 là ±i
Ví dụ 2: Tìm căn bậc hai của -4 ?
Tổng quát:Với a<0.Tìm căn bậc 2 của a
Ví dụ : ( Củng cố căn bậc 2 của số thực âm)
Hoạt động nhóm: GV chia lớp thành 4 nhóm, phát phiếu học tập 1, cho HS thảo luận để trả lời.
Chỉ ra được x = ±i
Vì i² = -1
(-i)² = -1
Þ số âm có 2 căn bậc 2 
Ta có( ±2i)²=-4
Þ -4 có 2 căn bậc 2 là 
± 2i
*Ta có (±i)²= -a
Þ có 2 căn bậc 2 của a là ±i 
1.Căn bậc 2 của số thực âm
Với a<0 có 2 căn bậc 2 của a là ±i 
Ví dụ :-4 có 2 căn bậc 2 là ±2i
(20’)
Hoạt động 2:Cách giải phương trình bậc 2 với hệ số thực 
Nhắc lại công thức nghiệm của phương trình bậc 2: 
ax² + bx + c = 0
 Δ > 0: pt có 2 nghiệm phân biệt:
 x1,2 = 
 Δ = 0: pt có nghiệm kép 
 x1 = x2 = 
 Δ < 0: pt không có nghiệm thực. 
*Trong tập hợp số phức,
Δ < 0 có 2 căn bậc 2, tìm căn bậc 2 của Δ
*Như vậy trong tập hợp số phức,Δ<0 phương trình có nghiệm hay không ?
Nghiệm bao nhiêu ?
Ví dụ :Giải các pt sau trên tập hợp số phức:
 a) x² - x + 1 = 0
Ví dụ 2: (Dùng phiếu học tập 2)
 Chia nhóm ,thảo luận 
* Gọi đại diện mỗi nhóm trình bày bài giải 
→GV nhận xét ,bổ sung (nếu cần).
*Giáo viên đưa ra nhận xét để học sinh tiếp thu. 
Þ 2 căn bậc 2 của Δ là ±i 
Þ Δ < 0 pt có 2 nghiệm phân biệt là:
 x1,2 = 
Δ = -3 < 0: pt có 2 nghiệm phân biệt 
 x1,2 = 
Chia nhóm ,thảo luận theo yêu cầu của giáo viên. 
II.Phương trình bậc 2
 + Δ>0:pt có 2 nghiệm phân biệt
x1,2 = 
 + Δ = 0: pt có nghiệm kép 
x1 = x2 = 
+ Δ<0: pt không có nghiệm thực.
Tuy nhiên trong tập hợp số phức, pt có 2 nghiệm phân biệt
x1,2 = 
Nhận xét:(sgk)
4.Củng cố toàn bài : (5’)
- Nhắc lại căn bậc 2 của 1 số thực âm. 
- Công thức nghiệm pt bậc 2 trong tập hợp số phức. 
- Bài tập củng cố (dùng bảng phụ ).
5.Hướng dẫn học bài ở nhà và ra bài tập về nhà. (2’)
Dặn dò học sinh học lý thuyết và làm bài tập về nhà trong sách giáo khoa. 
V.Phụ lục:
 1. Phiếu học tập 1:
 Tìm căn bậc 2 của các số :-2,-3,-5,-6,-8,-9,-10,-12
 2.Phiếu học tập 2
 Giải các pt sau trong tập hợp số phức 
 a).x² + 4 = 0
 b).-x² + 2x – 5 = 0
 c). x4 – 3x2 – 4 = 0
 d). x4 – 9 = 0
 3.Bảng phụ :
 BT1: Căn bậc 2 của -21là :
 A/ i 	 B/ -i 	 	C/±i	D/ ±
 BT2:Nghiệm của pt x4 – 4 = 0 trong tập hợp số phức là :
 A/ x=± 	 B/ x=i 	C/ x=-i D/ Tất cả đều đúng.
 BT3:Nghiệm của pt x4 + 4 = 0 trong tập hợp số phức là :
 A/ ±(1-i) B/ ±(1+i) C/ ±2i D/ A,B đều đúng 
Ngày02 tháng 01 năm2011	
Tiết PPCT 64
BÀI TẬP PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC
I.Tiến trình bài học:
1.ổn định lớp: (1’) 
2.Kiểm tra bài cũ: (6’)
Câu hỏi 1: Căn bậc 2 của số thực a<0 là gì?
Áp dụng : Tìm căn bậc 2 của -8
Câu hỏi 2: Công thức nghiệm của pt bậc 2 trong tập số phức 
Áp dụng : Giải pt bậc 2 : x² -x+5=0
3.Nội dung:
T/gian
Hoạt động của GV
Hoạt động của HS
Ghi bảng
4’
10’
10’
5’
5’
- Gọi 1 số học sinh đứng tại chỗ trả lời bài tập 1
- Gọi 3 học sinh lên bảng giải 3 câu a,b,c
Þ GV nhận xét, bổ sung (nếu cần).
- Gọi 2 học sinh lên bảng giải 
 Þ Cho HS theo dõi nhận xét và bổ sung bài giải (nếu cần). 
- Giáo viên yêu cầu học sinh nhăc lại cách tính 
z1+ z2, z1.z2 
trong trường hợp Δ > 0
- Yêu cầu học sinh nhắc lại nghiệm của pt trong trường hợp Δ < 0. ÞSau đó tính tổng z1+z2 tích z1.z2
- Yêu cầu học sinh tính z+z‾
	z.z‾
→z,z‾ là nghiệm của pt 
 X² -(z+z‾)X+z.z‾ = 0
→Tìm pt
Trả lời được :
± I ; ± 2i ; ±2i ; ±2i ; ±11i.
a/ -3z² + 2z – 1 = 0
Δ΄= -2 < 0 pt có 2 nghiệm phân biệt.
 z1,2 = 
b/ 7z² + 3z + 2 = 0
Δ= - 47 < 0 pt có 2 nghiệm phân biệt. 
 z1,2 = 
c/ 5z² - 7z + 11 = 0
Δ = -171 < 0 pt có 2 nghiệm phân biệt
z1,2 = 
 3a/ z4 + z² - 6 = 0
 z² = -3 → z = ±i
 z² = 2	 → z = ± 
3b/ z4 + 7z2 + 10 = 0
z2 = -5 → z = ±i
z² = - 2	 → z = ± i
Tính nghiệm trong trường hợp Δ < 0
Tìm được z1+z2 = 
 z1.z2 = 
z+z‾ = a+bi+a-bi=2a
z.z‾= (a+bi)(a-bi)
 = a² - b²i² = a² + b²
→z,z‾ là nghiệm của pt 
X²-2aX+a²+b²=0
Bài tập 1
Bài tập 2
Bài tập 3
BT4:
z1+z2 = 
 z1.z2 = 
BT5:
Pt:X²-2aX+a²+b²=0
4). Củng cố toàn bài (4’)
 - Nắm vững căn bậc 2 của số âm ; giải pt bậc 2 trong tập hợp số phức
 - Bài tập củng cố:
BT 1: Giải pt sau trên tập số phức:
 a/ z2 – z + 5 = 0
 b/ z4 – 1 = 0
 c/ z4 – z2 – 6 = 0
Ngày02 tháng 01 năm2011	
Tiết PPCT 65	
ÔN TẬP CHƯƠNG IV
Số tiết : 02. 
Ngày soan: 04/08/08
I/ Yêu cầu:
1/ Kiến thức: - Nắm được định nghĩa số phức, phần thực, phần ảo, môđun của số phức. Số phức liên hợp.
- Nắm vững được các phép toán: Cộng , trừ, nhân, chia số phức – Tính chất của phép cộng, nhân số phức.
- Nắm vững cách khai căn bậc hai của số thực âm. Giải phương trình bậc hai với hệ số thực.
2/ Kỹ năng: - Tính toán thành thạo các phép toán.
- Biểu diễn được số phức lên mặt phẳng tọa độ .
- Giải phương trình bậc I, II với hệ số thực.
3/ Tư duy, thái độ: - Rèn luyện tính tích cực trong học tập , tính toán cẩn thận , chính xác.
II/ Chuẩn bị: 
1/ Giáo viên: Bài soạn- Phiếu học tập.
2/ Học sinh: Bài cũ: ĐN, các phép toán, giải phương trình bậc hai với hệ số thực.
III/ Phương pháp giảng dạy: Nêu vấn đề - Gợi ý giải quyết vấn đề.
IV/ Tiến trình dạy học:
1/ Ổn định: (1’ ).
2/ Kiểm Tra: (9’ ) - Chuẩn bị bài cũ của học sinh.
- Biểu diễn số phức Z1= 2 + 3i và Z2 = 3 + i lên mặt phẳng tọa độ. Xác định véc tơ biểu diễn số phức Z1 + Z2 
* Phân tiết: Tiết 1: Từ HĐ1 -> HĐ3.
Tiết 2: Từ HĐ4 -> Cũng cố.
3/ Bài mới
TG
Hoạt động của Giáo viên
Hoạt động của học sinh
Ghi bảng
Hoạt động 1: Định nghĩa số phức -Số phức liên hợp
10’
Ø Nêu đ. nghĩa số phức ?
ØBiểu diễn số phức 
Z= a + bi lên mặt phẳng tọa độ ?
ØViết công thức tính môđun của số phức Z ?
ØNêu d. nghĩa số phức liên hợp của số phức Z= a + bi ?
Ø Số phức nào bằng số phức liên hợp của nó ?
Ø Giảng: Mỗi số phức đều có dạng Z= a + bi , a và b R. Khi biểu diễn Z lên mặt phẳng tọa độ ta được véc tơ = (a, b). Có số phức liên hợp = a + bi.
ØDạng Z= a + bi , trong đó a là phần thực, b là phần ảo.
Ø Vẽ hình
Ø
ØSố phức có phần ảo bằng 0.
Ø Theo dõi và tiếp thu
I/ ĐN số phức- Số phức liên hợp: 
- Số phức Z = a + bi với a, b R
* .
* Số phức liên hợp:
= a – bi
Chú ý: Z = 
Hoạt động 2: Biểu diễn hình học của số phức Z = a + bi.
10’
Ø Giảng: Mỗi số phức Z = a + bi biểu diễn bởi một điểm M (a, b) trên mặt phảng tọa độ.
ØNêu bài toán 6/ 145 (Sgk) . Yêu cầu lên bảng xác định ? 
ØTheo dõi 
Ø Vẽ hình và trả lời từng câu a, b, c, d
II/ Tập hợp các điểm biểu diễn số phức Z:
1/ Số phức Z có phần thực a = 1: Là đường thẳng qua hoành độ 1 và song song với Oy.
2/ Số phức Z có phần ảo b = -2: Là đường thẳng qua tung độ -2 và song song với Ox.
3/ Số phức Z có phần thực a ,phần ảo b : Là hình chữ nhật.
3/ : Là hình tròn có R = 2.
Hoạt động 3: các phép toán của số phức.
15’
ØYêu cầu HS nêu qui tắc: Cộng , trừ, nhân , chia số phức?
Ø Phép cộng, nhân số phức có tính chất nào ?
Ø Yêu cầu HS giải bài tập 6b, 8b .
*Gợi ý: Z = a + bi =0 ó 
ØTrả lời
Ø- Cộng: Giao hoán, kết hợp 
- Nhân: Giao hoán, kết hợp, phân phối.
Ø Lên bảng thực hiện
III/ Các phép toán :
Cho hai số phức:
Z1 = a1 + b1i
Z2 = a2 + b2i
*Cộng: 
Z1+Z2= a1+ a2+(b1+b2)i
* Trừ:
Z1-Z2= a1- a2+(b1-b2)i
* Nhân:
Z1Z2= a1a2- b1b2 +
(a1b2+a2b1)i
* Chia :
6b)Tìm x, y thỏa :
2x + y – 1 = (x+2y – 5)i
8b) Tính : (4-3i)+
= 4- 3i +
= 4 – 3i + 
Hoạt động 4: Căn bậc hai với số thực âm – Phương trình bậc hai với hệ số thực
ØNêu cách giải phương trình bậc hai : ax2 + bx + c = 0 ; a, b, c R và a 0 ?
Ø Yêu cầu HS giải bài tập 10a,b 
ØNêu các bước giải – ghi bảng
Ø Thực hiện
IV/ Phương trình bậc hai với hệ số thực:
ax2 + bx + c = 0 ; a, b, c R và a 0.
* Lập = b2 – 4ac
Nếu : 
10a) 3Z2 +7Z+8 = 0
Lập = b2 – 4ac = - 47
Z1,2 = .
10b) Z4 - 8 = 0.
 ó 
ó 
4/Cũng cố: - Nhắc lại hệ thống các kiến thức cơ bản : ĐN số phức, số phức liên hợp- Giải phương trình bậc hai với hệ số thực.
- HS thực hiện trên 3 phiếu học tập.
5/ Dặn dò: - Nắm vững lý thuyết chương 4.
- Giải các bài tập còn lại của chương - Xem lại bài tập đã giải.
-Chuẩn bị tiết sau kiểm tra 1 tiết của chương 4
V/ Phụ lục: 
Phiếu học tập số 1: 
Câu 1: Số phức Z = a + bi thỏa điều kiện nào để có điểm biểu diễn M ở phần gạch chéo trong hình a, b, c.
2) Phiếu học tập số 2:
Câu 2: Giải phương trình : Z4 – Z2 – 5 = 0.
3) Phiếu học tập số 3: 
Câu 3: Tìm hai số phức Z1, Z2 thỏa : Z1 + Z2 = 1 và Z1Z2 = 7 
Ngày02 tháng 01 năm2011	
Tiết PPCT 66 
KIỂM TRA 1 TIẾT CHƯƠNG IV
 A/ PHẦN TRẮC NGHIỆM (4đ)
 Câu 1: Phần ảo của z =3i là
 a/ o b/ 3i c/ i d/ 3
 Câu 2: bằng:
 a/ 5 b/ -3 c/ d/
 Câu 3: Tìm các số thực x và y biết:
 	 (3x-2) + (2y + 1)i =(x+1) -(y-5)i
 	 a/x =3, y =4 c/x = , y = 
 	 b/ x = , y =2 d/ x = ,y = 
 	Câu 4: Số z + là:
 	 a/ Số thực b/ số ảo c/ o d/ 2
 	Câu 5: Đẳng thức nào sau đây đúng:
 	a/i2006 = -i b/i2007 = 1 c/ i2008 = i d/i2345 = i
 	 Câu 6: Căn bậc hai của -36 là :
 a/ 6 b/ c/ - 36i 	d/ o
 Thực hiện bài 7,8,9,10 với đề toán sau:
 Cho z =3 + 2i; z1 =2-3i
 Câu 7: z z1 bằng:
 	 a/ 12 - 5i b/ 6 - 6i c/ 13i d/ 12 + 13i
 	Câu 8: z/z1 bằng:
 	 a/ 13i b/ 6 + I c/ i d/ 6 +13i
 	Câu 9: z + z1 bằng :
 	 a/ 6 - 5i b/ 5 + 5i c/ 6 - 6i d/ 5 - i
 	 Câu 10 : z + bằng:
 	 a/ 6 - 4i b/ 4i c/ 6 d/ 4
 B/ PHẦN TỰ LUẬN:
Thực hiện phép tính: 
 ( 1- 2 i ) + 
Giải phương trình : z2 - 2z + 9 =0
Tìm số phức z, biết = 3 và phần ảo của z bằng 3 lần phần thực của nó.
¤n thi häc kú II vµ tèt nghiÖp

Tài liệu đính kèm:

  • docgt12.c4.doc