ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012
Môn thi : TOÁN (ĐỀ 1 )
I. PHẦN CHUNG (7 điểm) (Cho tất cả các thí sinh)
Câu 1 (2đ) Cho hàm số: y = 2x3 - 3x2 + 1 (1)
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1)
2. Tìm trên (C) những điểm M sao cho tiếp tuyến của (C) tại M cắt trục tung tại điểm có tung độ bằng 8.
ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN (ĐỀ 1 ) I. PHẦN CHUNG (7 điểm) (Cho tất cả các thí sinh) Câu 1 (2đ) Cho hàm số: y = 2x3 - 3x2 + 1 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) 2. Tìm trên (C) những điểm M sao cho tiếp tuyến của (C) tại M cắt trục tung tại điểm có tung độ bằng 8. Câu 2 (2đ) 1. Giải hệ phương trình: 2. Giải phương trình: 9x + ( - 12).3x + 11 - = 0 Câu 3 (1đ) Tính thể tích khối chóp tam giác đều S.ABC có cạnh đáy bằng a và khoảng cách giữa cạnh bên và cạnh đáy đối diện bằng m. Câu 4 (1đ) Tính tích phân: Câu 5 (1đ) Cho tam giác ABC, với BC = a, CA = b, AB = c. Thoả mãn hệ điều kiện: CMR: II. PHẦN RIÊNG (3đ) (Thí sinh chỉ làm một trong hai phần) Theo chương trình chuẩn: Câu 6a (2đ) 1. Trong mặt phẳng (oxy) cho đường thẳng (d): 3x - 4y + 5 = 0 và đường tròn (C): x2 + y2 + 2x - 6y + 9 = 0 Tìm những điểm M (C) và N (d) sao cho MN có độ dài nhỏ nhất. 2. Trong không gian (oxyz) cho hai mặt phẳng: (P1): x - 2y + 2z - 3 = 0 (P2): 2x + y - 2z - 4 = 0 và đường thẳng (d): Lập phương trình mặt cầu (S) có tâm I (d) và tiếp xúc với hai mặt phẳng (P1), (P2). Câu 7a (1đ) Đặt: (1 - x + x2 - x3)4 = a0 + a1x + a2x2 + ... + a12x12. Tính hệ số a7. Theo chương trình nâng cao Câu 6b (2đ) 1. Trong mặt phẳng (oxy) cho đường tròn (C): (x + 1)2 + (y - 3)2 = 1 và điểm M . Tìm trên (C) những điểm N sao cho MN có độ dài lớn nhất. 2. Trong không gian (oxyz), cho mặt cầu (S): x2 + y2 + z2 + 2x - 4y - 2z + 5 = 0 và mặt phẳng (P): x - 2y + 2z - 3 = 0. Tìm những điểm M (S), N (P) sao cho MN có độ dài nhỏ nhất. Câu 7b (1đ) Dùng định nghĩa, tính đạo hàm của hàm số: khi x 0, và ; tại điểm x0 = 0. ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN (ĐỀ 1 ) I. PHẦN CHUNG (7 điểm) ĐIỂM Câu 1 (2đ) y = 2x3 - 3x2 + 1 1) Khảo sát và vẽ đồ thị (C) * TXĐ: R * Sự biến thiên: + Giới hạn: = , = 0,25đ + Bảng biến thiên: y’ = 6x2 - 6x = 6x (x - 1) y' = 0 0,25đ Lập BBT; nêu đúng các khoảng đơn điệu và các điểm cực trị 0,25đ * Đồ thị: (tự vẽ), rõ ràng, đầy đủ, chính xác. 0,25đ 2) Tìm M (C) ? Giả sử M (x0; y0) (C) y0 = 2x03 - 3x02 + 1 Tiếp tuyến () của (C) tại M: y = (6x02 - 6x0) (x - x0) + 2x03 - 3x02 + 1 0,25đ () đi qua điểm P(0 ; 8) 8 = -4x03 + 3x02 + 1 (x0 + 1) (4x02 - 7x0 + 7) = 0 0,25đ x0 = -1 ; (4x02 - 7x0 + 7 > 0, x0) 0,25đ Vậy, có duy nhất điểm M (-1 ; -4) cần tìm. 0,25đ Câu 2 (2đ) 1) Giải hệ: 0,25đ 0,25đ , tương ứng y 0,25đ Thử lại, thoả mãn hệ đã cho Vậy, 0,25đ 2) Giải phương trình: (a + b + c = 0) 0,5đ có nghiệm duy nhất = 2 0,25đ Vậy, tập nghiệm của phương trình: S = {0 ; 2} 0,25đ Câu 3 (1đ) S N A C M O B SO (ABC) S.ABC chóp đều O là tâm tam giác đều ABC. Trong SAM kẻ đường cao MN MN = m 0,25đ SA.MN = SO.AM 0,25đ ; và S(ABC) = a2 0,25đ 0,25đ Câu 4 (1đ) Tính tích phân + = (sử dụng đổi biến: ) 0,25đ (Từng phần) 0,25đ (đổi biến ) 0,25đ 0,25đ Câu 5 (1đ) ABC: (1) sin2A + sinAsinC = sin2B (Đl sin) sinAsinC = (cos2A - cos2B) sinAsinC = sin(A + B) sin (B -A) sinA = sin (B - A) ; (sin (A + B) = sin C > 0) A = B - A ; (A, B là góc của tam giác) B = 2A 0,25đ Tương tự: (2) C = 2B A + B + C = , nên A = ; B = ; C = 0,25đ Ta có: = 0,25đ = (đpcm) 0,25đ II. PHẦN RIÊNG (3 điểm) Chương trình cơ bản Câu 6a (2đ) 1) Tìm M (C), N (d)? (d): 3x - 4y + 5 = 0 (C): (x + 1)2 + (y - 3)2 = 1 Tâm I (-1 ; 3), bán kính R = 1 d (I ; d) = 2 (d) (C) = Ø Giả sử tìm được N0 (d) N0 là hình chiếu vuông góc của I trên (d) N0 = (d) , với: 0,25đ 0,25đ Rõ ràng (C) = {M1; M2} ; M1 ; M2 M0 (C) để M0N0 nhỏ nhất M0 M1 và M0N0 = 1 0,25đ Kết luận: Những điểm cần tìm thoả mãn điều kiện bài toán. M ; N 0,25đ 2) Phương trình mặt cầu (S) ? (P1): x - 2y + 2z - 3 = 0 (P2): 2x + y - 2z - 4 = 0 Giả sử I (x0 ; y0 ; z0) (d): I (-2 - t ; 2t ; 4 + 3t) là tâm của mặt cầu (S) 0,25đ Mặt cầu (S) tiếp xúc với (P1), (P2) d (I, (P1)) = d (I ; (P2)) 0,25đ I1 = (11 ; 26 ; -35) ; I2 (-1 ; 2 ; 1) R1 = 38 ; R2 = 2 0,25đ Vậy, có hai mặt cầu cần tìm: (S1): (x - 11)2 + (y - 26)2 + (z + 35)2 = 382 (S2): (x + 1)2 + (y - 2)2 + (z - 1)2 = 22 0,25đ Câu 7a (1đ) Tính hệ số a7 ? (1 - x + x2 - x3)4 = (1 - x)4 (1 + x2)4 0,25đ = 0,25đ (Gt) 0,25đ 0,25đ Chương trình nâng cao Câu 6b (2đ) 1) Tìm N (C)? (C): (x + 1)2 + (y - 3)2 = 1 Tâm I (-1 ; 3), bán kính R = 1 ; M 0,25đ Giả sử tìm được N (C) MN MI + IN = 3 0,25đ Dấu “=” xảy ra N là giao điểm của tia đối IM và đường tròn (C). (IM): ; , ; MN1 < MN2 0,25đ Kết luận: Thoả mãn điều kiện bài toán: 0,25đ 2) Tìm M (S) , N (P) ? (S): (x + 1)2 + (y - 2)2 + (z - 1)2 = 1 Tâm I (-1 ; 2 ; 1), bán kính R = 1 (P): x - 2y + 2z - 3 = 0 d = 2 Giả sử tìm được N0 (P)N0 là hình chiếu vuông góc của I trên (P) 0,25đ , với: 0,25đ {M1 ; M2} , 0,25đ M1M0 = 1 < M2M0 = 3 M0 (S) để M0N0 nhỏ nhất M0 M1 Vậy, những điểm cần tìm thoả mãn yêu cầu bài toán. , 0,25đ Câu 7b (1đ) Đạo hàm bằng định nghĩa: = 0,25đ = 0,25đ = 0,25đ = -1 + = -. Vậy, 0,25đ ............................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN (ĐỀ 2 ) Phần chung (7 điểm) Câu I (2 điểm) Cho hàm số có đồ thị Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi Tìm tập hợp các giá trị của để đồ thị cắt trục hoành tại một và chỉ một điểm. Câu II (2 điểm) 1) Giải phương trình: 2) Giải phương trình: Câu III (1 điểm) Tính Câu IV (1 điểm) Một hình nón đỉnh , có tâm đường tròn đáy là là hai điểm trên đường tròn đáy sao cho khoảng cách từ đến đường thẳng bằng , . Tính theo chiều cao và diện tích xung quanh của hình nón Câu V (1 điểm) Cho hai số dương thỏa mãn: . Tìm giá trị nhỏ nhất của biểu thức: Phần riêng (3 điểm). Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B) Phần A Câu VI (2 điểm) 1) Trong mặt phẳng tọa độ cho đường thẳng có phương trình : và điểm . Tìm phương trình đường thẳng cắt trục hoành tại cắt đường thẳng tại sao cho tam giác vuông cân tại 2) Trong không gian tọa độ , lập phương trình mặt phẳng đi qua hai điểm và tiếp xúc với mặt cầu có phương trình: Câu VII (1 điểm) Cho số phức là một nghiệm của phương trình: . Rút gọn biểu thức Phần B Câu VI (2 điểm) 1) Trong mặt phẳng tọa độ cho đường tròncó phương trình và điểm . Tìm phương trình đường thẳng đi qua điểm và cắt đường tròn tại 2 điểm sao cho 2) Trong không gian tọa độ cho mặt phẳng có phương trình: . Lập phương trình mặt cầu đi qua ba điểm và tiếp xúc với mặt phẳng Câu VII (1 điểm) Giải bất phương trình: --------------------Hết-------------------- HƯỚNG DẪN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN (ĐỀ 2 ) Câu I.1 (1,0 đ) hàm số trở thành: Tập xác định Sự biến thiên hàm số đồng biến trên và hàm số nghịch biến trên điểm CĐ, điểm CT Điểm uốn: , Điểm uốn U Bảng biến thiên: + CT CĐ Đồ thị 0,25 0,25 0,25 0,25 Câu I.2 (1,0 đ) Phương trình cho HĐGĐ không thỏa mãn nên: Xét hàm số ta có bảng biến thiên: + -3 Số nghiệm của (*) là số giao điểm của đường thẳng và đồ thị hàm số nên để (*) có một nghiệm duy nhất thì Lưu ý: Có thể lập luận để đồ thị của hàm số hoặc không có cực trị hoặc có hai điểm cực trị và hai điểm cực trị nằm cùng phía đối với trục hoành 0,25 0,25 0,25 0,25 Câu II.1 (1,0 đ) ,(1) Điều kiện: Đối chiếu điề kiện phương trình có nghiệm là: 0,25 0,25 0,25 0,25 Câu II.2 (1,0 đ) Đặt ta được phương trình + Với t = 4 Ta có + Với t = 2 ta có ĐS: phương trình có 2 nghiệm 0,25 0,25 0,25 0,25 Câu III (1,0 đ) Đặt 0,25 0,25 0,25 0,25 Câu IV (1,0 đ) Gọi I là trung điểm của , nên Đặt đều Tam giác vuông tại nên Chiếu cao: Diện tích xung quanh: 0,25 0,25 0,25 0,25 Câu V (1,0 đ) Cho hai số dương thỏa mãn: . Thay được: bằng khi Vậy Min P = Lưu ý: Có thể thay sau đó tìm giá trị bé nhất của hàm số 0,25 0,50 0,25 Câu AVI.1 (1,0 đ) nằm trên nên, nằm trên đường thẳng nên , Tam giác ABM vuông cân tại M nên: , do không thỏa mãn vậy Với: đường thẳng qua AB có phương trình Với đường thẳng qua AB có phương trình 0,25 0,25 0,25 0,25 ......................................................... ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN (ĐỀ3 ) Câu 1: Cho hàm số y = có đồ thị là (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trên. 2) Tìm trên (C) những điểm M sao cho tiếp tuyến tại M của (C) cắt 2 tiệm cận của (C) tại A, B sao cho AB ngắn nhất. Câu 2: 1) Giải phương trình: 2) Giải hệ phương trình: Câu 3: 1) Tính tích phân I = 2) Tìm các giá trị của tham số thực m sao cho phương trình sau có nghiệm thực: (m - 3) + ( 2- m)x + 3 - m = 0. (1) Câu 4: Cho ba số thực dương a, b, c thỏa mãn abc = 1. Chứng minh rằng: Câu 5: Cho hình chóp S. ABC có góc ((SBC), (ACB)) =600, ABC và SBC là các tam giác đều cạnh a. Tính theo a khoảng cách từ B đến mặt phẳng (SAC). PHẦN RIÊNG 1. Theo chương trình chuẩn: Câu 6a: Cho D ABC có B(1;2), phân giác trong góc A có phương trình (D ) 2x +y –1 =0; khoảng cách từ C đến (D ) bằng 2 lần khoảng cách từ B đến (D). Tìm A, C biết C thuộc trục tung. Câu 7a: Trong không gian Oxyz cho mp(P): x –2y +z -2 =0 và hai đường thẳng : (d1) ; (d2) . Viết phương trình tham số của đường thẳng D nằm trong mp(P) và cắt cả 2 đường thẳng (d1) , (d2) 2. Theo chương trình nâng cao: Câu 6b: Cho D ABC có diện tích bằng 3/2; A(2;–3), B(3;–2), trọng tâm G Î (d) 3x –y –8 =0. tìm bán kinh đường tròn nội tiếp D ABC. Câu 7b: Trong không gian Oxyz cho đường thẳng (d) là giao tuyến của 2 mặt phẳng: (P): 2x–2y–z +1 =0, (Q): x+2y –2z –4 =0 và mặt cầu (S): x2 +y2 +z2 +4x –6y +m =0. Tìm tất cả các giá trị của m để (S) cắt (d) tại 2 điểm MN sao cho MN= 8. ................................................... Đáp án ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN (ĐỀ 3 ) Phần chung: Câu 1: Cho hàm số y = có đồ thị là (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trên. 2) Tìm trên (C) những điểm M sao cho tiếp tuyến tại M của (C) cắt 2 tiệm cận của (C) tại A, b sao cho AB ngắn nhất. Giải: 1) y= (C) D= R\ {2} TCĐ x = 2 y’ = BBT 2) Gọi M(xo; )Î (C) . Phương trình tiếp tuyến tại M: (D) y = (D ) Ç TCĐ = A (2; ) (D ) Ç TCN = B (2x0 –2; 2) Þ AB = Þ AB min = Û Câu 2: 1) Giải phương trình: Giải: phương trình Û 2(cosx–sinx)(sinx–cosx)=0 Û 2) Giải hệ phương trình: Giải: (1) Þ y ¹ 0 Hệ Û Đặt a = 2x; b = . Ta có hệ: ® Hệ đã cho có 2 nghiệm Câu 3: 1) Tính tích phân I = Giải: I =. §Æt Þ I = 2) Tìm các giá trị của tham số thực m sao cho phương trình sau có nghiệm thực: (m - 3) + ( 2- m)x + 3 - m = 0. (1) Giải: Đk x ³ 0. đặt t = ; t ³ 0 trở thành (m–3)t+(2-m)t2 +3-m = 0 Û (2) Xét hàm số f(t) = (t ³ 0) Lập bảng biến thiên (1) có nghiệm Û (2) có nghiệm t ³ 0 Û Câu 4: Cho ba số thực dương a, b, c thỏa mãn abc = 1. Chứng minh rằng: Giải: Þ Tương tự, Ta sẽ chứng minh: Bđt(1) Û 4(a3b2+b3a2+c3a2) +2(a3+b3+c3 )+2(ab2+bc2+ca2)+( a+b+c) ³ ³ 8a2b2c2 +4(a2b2 +b2c2 +c2a2) +2 (a2 +b2 +c2 )+1 (2) Ta có: 2a3b2 +2ab2 ³ 4a2b2; . (3) 2(a3b2+b3a2+c3 ... D nên toạ độ 0.25 - Với b = - 7a (loại vì AC không cắt BD) 0.25 2 1.0 Phương trình tham số của d1 và d2 là: 0.25 Giả sử d cắt d1 tại M(-1 + 2t ; 1 + 3t ; 2 + t) và cắt d2 tại N(2 + m ; - 2 + 5m ; - 2m) (3 + m - 2t ; - 3 + 5m - 3t ; - 2 - 2m - t). 0.25 Do d ^ (P) có VTPT nên có nghiệm 0.25 Giải hệ tìm được Khi đó điểm M(1; 4; 3) Phương trình d: thoả mãn bài toán 0.25 VII.a Tìm phần thực của số phức z = (1 + i)n , biết rằng n Î N thỏa mãn phương trình log4(n – 3) + log4(n + 9) = 3 1.0 Điều kiện: Phương trình log4(n – 3) + log4(n + 9) = 3 Û log4(n – 3)(n + 9) = 3 0.25 (thoả mãn) (không thoả mãn) Û (n – 3)(n + 9) = 43 Û n2 + 6n – 91 = 0 Vậy n = 7. 0.25 Khi đó z = (1 + i)n = (1 + i)7 = 0.25 Vậy phần thực của số phức z là 8. 0.25 VI.b 2.0 1 1.0 Giả sử Vì G là trọng tâm nên ta có hệ: 0.25 Từ các phương trình trên ta có: B(-1;-4) ; C(5;1) 0.25 Ta có nên phương trình BG: 4x – 3y – 8 = 0 0.25 Bán kính R = d(C; BG) = phương trình đường tròn: (x – 5)2 +(y – 1)2 = 0.25 2 1.0 Ta có phương trình tham số của d là: Þ toạ độ điểm M là nghiệm của hệ (tham số t) 0.25 Lại có VTPT của(P) là , VTCP của d là . Vì nằm trong (P) và vuông góc với d nên VTCP Gọi N(x; y; z) là hình chiếu vuông góc của M trên , khi đó. Ta có vuông góc với nên ta có phương trình: 2x – 3y + z – 11 = 0 Lại có N(P) và MN = ta có hệ: 0.25 Giải hệ ta tìm được hai điểm N(5; - 2; - 5) và N(- 3; - 4; 5) 0.25 Nếu N(5; -2; -5) ta có pt Nếu N(-3; -4; 5) ta có pt 0.25 VII.b Giải hệ phương trình 1.0 Điều kiện: 0.25 Hệ phương trình 0.25 0.25 (không thỏa mãn đk) (không thỏa mãn đk) Vậy hệ phương trình đã cho vô nghiệm. 0.25 Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì được điểm từng phần như đáp án quy định. ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN (ĐỀ 4 ) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I:(2,0 điểm) Cho hàm số (C ) với m là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (C) khi . 2. Tìm các gíá trị của m để đồ thị của hàm số (C) có hai điểm cực trị và chứng tỏ rằng hai điểm cực trị này ở về hai phía của trục tung. Câu II:(2,0 điểm) 1. Giải phương trình: . 2. Tính tích phân : . Câu III:(2,0 điểm) 1. Tìm các giá trị của tham số m để phương trình: có nghiệm thực . 2. Chứng minh: với mọi số thực x , y , z thuộc đoạn . Câu IV:(1,0 điểm) Cho hình chóp S.ABC có chân đường cao là H trùng với tâm của đường tròn nội tiếp tam giác ABC và AB = AC = 5a , BC = 6a . Góc giữa mặt bên (SBC) với mặt đáy là .Tính theo a thể tích và diện tích xung quanh của khối chóp S.ABC. II. PHẦN RIÊNG (3,0 điểm). Thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình chuẩn Câu Va:(1,0 điểm) Trong mặt phẳng tọa độ (Oxy) , cho tam giác ABC vuông cân tại A với và là trọng tâm . Tính bán kính đường tròn nội tiếp tam giác ABC. Câu VI.a:(2,0 điểm) 1. Giải phương trình: . 2. Tìm giá trị nhỏ nhất của hàm số . B. Theo chương trình nâng cao Câu Vb:(1,0 điểm) Trong mặt phẳng tọa độ (Oxy) , cho tam giác ABC với và phương trình hai đường trung tuyến của tam giác ABC qua hai đỉnh B , C lần lượt là và . Tìm tọa độ hai điểm B và C. Câu VI.b:(2,0 điểm) 1. Giải phương trình: . 2. Tìm giới hạn: . -----Hết----- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. ......................................................................................................................... Đ áp án ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN (ĐỀ 4 ) Câu Ý NỘI DUNG Điểm Câu I (2,0đ) Ý 1 (1,0 đ) Khi m =1 . Tập xác định D=R . 0,25 đ Giới hạn: . y’= 3x2 – 3 ; y’=0 . 0,25 đ Bảng biến thiên . Hàm số đồng biến trên khoảng và nghịch biến trên khoảng . Hàm số đạt CĐ tại x = -1 ; yCĐ = 3 và đạt CT tại x = 1 ; yCT = -1 . 0,25 đ Điểm đặc biệt: ĐT cắt Oy tại (0 ; 1) và qua (-2 ; -1) ; (2 ; 3). Đồ thị ( không cần tìm điểm uốn) . 0,25 đ Ý 2 (1,0 đ) y’ = 0 3x2 – 3m = 0 ; . 0,25 đ : y’ không đổi dấu hàm số không có cực trị . 0,25 đ : y’ đổi dấu qua 2 nghiệm của y’=0 hàm số có 2 cực trị. KL: . 0,25 đ đpcm. 0,25 đ âu II (2,0 đ) Ý 1 (1,0 đ) Biến đổi: 0,25 đ 0,25 đ . 0,25 đ , k KL: 0,25 đ Ý 2 (1,0 đ) Khi x = 2y ; (loại) . 0,25 đ Khi y=2x -3 x 2 = 3 : VN . KL: nghiệm hệ PT là . 0,25 đ Câu III (2,0 đ) Ý 1 (1,0 đ) Đặt ĐK: t > 0 . PT trở thành: . 0,25 đ Xét với t > 0 . hàm số NB trên . 0,50 đ ; f(0) = 1. KL: 0< m <1. 0,25 đ Ý 2 (1,0 đ) Ta có:. 0,25 đ Suy ra : 0,50 đ 0,25 đ Câu IV (1,0 đ) Gọi M là trung điểm BC A , M , H thẳng hàng . 0,25 đ AM=4a =MH . 0,25 đ . 0,25 đ Hạ HN , HP vuông góc với AB và AC HM = HN = HP. 0,25 đ Câu Va (1,0 đ) Đặt AB = a. 0,50 đ . 0,25 đ . 0,25 đ Câu VIa (2,0 đ) Ý 1 (1,0 đ) PT . Chia 2 vế cho , ta có:. 0,50đ Đặt . ĐK: . 0,25 đ Khi , ta có: . 0,25 đ Ý 2 (1,0 đ) TXĐ: ; . 0,25 đ y’= 0 ; y(1) = 0 vì là HSĐB 0,50 đ Khi 0 1 . KL: miny = 0. 0,25 đ Câu Vb (1,0 đ) Tọa độ trọng tâm tam giác ABC là . 0,25 đ Gọi ; Ta có: . 0,50 đ KL: . 0,25 đ Câu VIb (2,0 đ) Ý 1 (1,0 đ) ĐK: x > 0 . Đặt . 0,25 đ Ta có:. 0,50 đ Khi t = 2 thì (th) KL: nghiệm PT là . 0,25 đ Ý 2 (1,0 đ) Đặt . 0,25 đ Giới hạn trở thành: . 0,50đ KL: . 0,25đ * Lưu ý: Học sinh có lời giải khác với đáp án chấm thi nếu có lập luận đúng dựa vào SGK hiện hành và có kết quả chính xác đến ý nào thì cho điểm tối đa ở ý đó ; chỉ cho điểm đến phần học sinh làm đúng từ trên xuống dưới và phần làm bài sau không cho điểm. ..HẾT.. ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN (ĐỀ 5 ) PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7 điểm) Câu I (2 điểm) Cho hàm số . 1)Khảo sát và vẽ đồ thị của hàm số trên. 2)Gọi (d) là đường thẳng qua A( 1; 1 ) và có hệ số góc k. Tìm k sao cho (d) cắt ( C ) tại hai điểm M, N và . Câu II (2 điểm) : 1. Giải hệ phương trình: 2.Giải phương trình : . Câu III (1 điểm): Tính tích phân: Câu IV (1 điểm) Cho hình chóp cụt tam giác đều ngoại tiếp một hình cầu bán kính r cho trước. Tính thể tích hình chóp cụt biết rằng cạnh đáy lớn gấp đôi cạnh đáy nhỏ. Câu V (1 điểm) T×m m ®Ó ph¬ng tr×nh sau cã 2 nghiÖm ph©n biÖt : . PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2) 1. Theo chương trình chuẩn. Câu VI.a (2 điểm) 1. ChoABC có đỉnh A(1;2), đường trung tuyến BM: và phân giác trong CD: . Viết phương trình đường thẳng BC. 2. Cho đường thẳng (D) có phương trình: .Gọi là đường thẳng qua điểm A(4;0;-1) song song với (D) và I(-2;0;2) là hình chiếu vuông góc của A trên (D). Trong các mặt phẳng qua , hãy viết phương trình của mặt phẳng có khoảng cách đến (D) là lớn nhất. Câu VII.a (1 điểm) Cho x, y, z là 3 số thực thuộc (0;1]. Chứng minh rằng 2. Theo chương trình nâng cao. Câu VI.b (2 điểm) 1) Trong mặt phẳng với hệ tọa độ Oxy cho đường tròn hai đường tròn cùng đi qua M(1; 0). Viết phương trình đường thẳng qua M cắt hai đường tròn lần lượt tại A, B sao cho MA= 2MB. 2)Trong kh«ng gian víi hÖ täa ®é Oxyz cho hai ®êng th¼ng d vµ d’ lÇn lît cã ph¬ng tr×nh : d : vµ d’ : . ViÕt ph¬ng tr×nh mÆt ph¼ng ®i qua d vµ t¹o víi d’ mét gãc Câu VII.b (1 điểm) Cho a, b, c là ba cạnh tam giác. Chứng minh ----------------------Hết---------------------- Đ ÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG 2012 Môn thi : TOÁN (ĐỀ 5 ) Câu Phần Nội dung I (2,0) 1(1,0) Làm đúng, đủ các bước theo Sơ đồ khảo sát hàm số cho điểm tối đa. 2(1,0) Từ giả thiết ta có: Bài toán trở thành: Tìm k để hệ phương trình sau có hai nghiệm phân biệt sao cho . Ta có: Dễ có (I) có hai nghiệm phân biệt khi và chỉ khi phương trình có hai nghiệm phân biệt. Khi đó dễ có được Ta biến đổi (*) trở thành: Theo định lí Viet cho (**) ta có: thế vào (***) ta có phương trình: . KL: Vậy có 3 giá trị của k thoả mãn như trên. Câu Ý Nội dung Điểm 1 1,00 CâuII:2. Giải phương trình: . . VËy hoÆc . Víi ta cã hoÆc Víi ta cã , suy ra hoÆc 0,50 2 1,00 Điều kiện: Đặt ; không thỏa hệ nên xét ta có . Hệ phương trình đã cho có dạng: 0,25 hoặc + (I) + (II) Giải hệ (I), (II). Sau đó hợp các kết quả lại, ta được tập nghiệm của hệ phương trình ban đầu là Câu Phần Nội dung Điểm III (1,0) Đặt Suy ra: (Do tích phân không phụ thuộc vào kí hiệu cảu biến số). Suy ra: = =. KL: Vậy 0,25 0,25 0,5 IV 0,25 Gọi H, H’ là tâm của các tam giác đều ABC, A’B’C’. Gọi I, I’ là trung điểm của AB, A’B’. Ta có: Suy ra hình cầu nội tiếp hình chóp cụt này tiếp xúc với hai đáy tại H, H’ và tiếp xúc với mặt bên (ABB’A’) tại điểm . 0,25 Gọi x là cạnh đáy nhỏ, theo giả thiết 2x là cạnh đáy lớn. Ta có: Tam giác IOI’ vuông ở O nên: 0,25 Thể tích hình chóp cụt tính bởi: Trong đó: 0,25 Từ đó, ta có: 0,25 V NhËn xÐt : 10x= 2(2x+1)2 +2(x2 +1) Ph¬ng tr×nh t¬ng ®¬ng víi : (. §Æt §iÒu kiÖn : -2< t . Rót m ta cã: m= LËp b¶ng biÕn thiªn cña hµm sè trªn , ta cã kÕt qu¶ cña m ®Ó ph¬ng tr×nh cã hai nghiÖm ph©n biÖt lµ: hoÆc -5 < 0,25 0,25 0,25 0,25 VIa 0,75 1 1,00 Điểm . Suy ra trung điểm M của AC là . 0,25 Điểm 0,25 0,25 Từ A(1;2), kẻ tại I (điểm ). Suy ra . Tọa độ điểm I thỏa hệ: . Tam giác ACK cân tại C nên I là trung điểm của AK tọa độ của . Đường thẳng BC đi qua C, K nên có phương trình: 2 Gọi (P) là mặt phẳng đi qua đường thẳng , thì hoặc . Gọi H là hình chiếu vuông góc của I trên (P). Ta luôn có và . Mặt khác Trong mặt phẳng , ; do đó . Lúc này (P) ở vị trí (P0) vuông góc với IA tại A. Vectơ pháp tuyến của (P0) là , cùng phương với . Phương trình của mặt phẳng (P0) là: . VIIa Để ý rằng ; và tương tự ta cũng có 0,25 Vì vậy ta có: vv 1,00 VIb 1) + Gọi tâm và bán kính của (C), (C’) lần lượt là I(1; 1) , I’(-2; 0) và , đường thẳng (d) qua M có phương trình . + Gọi H, H’ lần lượt là trung điểm của AM, BM. Khi đó ta có: , Dễ thấy nên chọn . Kiểm tra điều kiện rồi thay vào (*) ta có hai đường thẳng thoả mãn. 0,25 0,25 0,25 0,25 2 .§êng th¼ng d ®i qua ®iÓm vµ cã vect¬ chØ ph¬ng §êng th¼ng d’ ®i qua ®iÓm vµ cã vect¬ chØ ph¬ng . Mp ph¶i ®i qua ®iÓm M vµ cã vect¬ ph¸p tuyÕn vu«ng gãc víi vµ . Bëi vËy nÕu ®Æt th× ta ph¶i cã : Ta cã . VËy hoÆc . NÕu ,ta cã thÓ chän A=C=1, khi ®ã , tøc lµ vµ cã ph¬ng tr×nh hay NÕu ta cã thÓ chän , khi ®ã , tøc lµ vµ cã ph¬ng tr×nh hay 0,25 VIIb 1,00 Vì a, b, c là ba cạnh tam giác nên:. Đặt . Vế trái viết lại: 0,50 Ta có: . Tương tự: Do đó: . Tức là: 0,50 V.Phương trình (1) Điều kiện : Nếu thỏa mãn (1) thì 1 – x cũng thỏa mãn (1) nên để (1) có nghiệm duy nhất thì cần có điều kiện . Thay vào (1) ta được: * Với m = 0; (1) trở thành: Phương trình có nghiệm duy nhất. * Với m = -1; (1) trở thành + Với + Với Trường hợp này, (1) cũng có nghiệm duy nhất. * Với m = 1 thì (1) trở thành: Ta thấy phương trình (1) có 2 nghiệm nên trong trường hợp này (1) không có nghiệm duy nhất. Vậy phương trình có nghiệm duy nhất khi m = 0 và m = -1. ................................................................................................ GOODLUCK TO U !
Tài liệu đính kèm: