Trong các kỳ thi tuyển sinh vào các trường đại học – cao đẳng thường có bài toán về tính tích phân. Bài viết này xin trao đổi với các bạn về một hướng tiếp cận ( cách “tư duy”) để tính tích phân trong phạm vi phương pháp “ đặt ẩn phụ” . Tác giả gọi tên là “ đặt ẩn phụ không làm thay đổi cận của tích phân”.
THÊM MỘT CÁC TIẾP CẬN NỮA ĐỂ TÍNH TÍCH PHÂN Nguyễn Hữu Thanh – THPT Thuận Thành số I – Bắc Ninh Trong các kỳ thi tuyển sinh vào các trường đại học – cao đẳng thường có bài toán về tính tích phân. Bài viết này xin trao đổi với các bạn về một hướng tiếp cận ( cách “tư duy”) để tính tích phân trong phạm vi phương pháp “ đặt ẩn phụ” . Tác giả gọi tên là “ đặt ẩn phụ không làm thay đổi cận của tích phân”. Kiến thức cơ bản. Định nghĩa: Cho hàm số y = f(x) liên tục trên nếu F (x) là một nguyên hàm của f(x) thì Định nghĩa trên không phụ thuộc vào kí hiệu biến số dưới dấu tích phân. Một số tính chất cần chú ý: + + Các bài toán và phân tích. Bài toán 1: Tính tích phân I= Khi gặp bài toán này, chắc chắn rằng tất cả các bạn đều nghĩ cách khai triển biểu thức dưới dấu tích phân để đưa về các tích phân cơ bản để tính. Đó là một cách suy nghĩ thường hay gặp phải. Nhưng bạn hãy thử làm xem sao, và hãy thử thay (x3-3x2+2)3 bằng (x3-3x2+3)7 , (x3-3x2+3)9 .... rồi tính nhé!. Sau đó mời các bạn nghiên cứu lời giải sau: Lời giải: Đặt x=2-t Khi đọc xong lời giải trên chắc chắn các bạn sẽ đặt câu hỏi : Tại sao lại đặt ẩn phụ như vậy?. Để tìm câu trả lời xin mời các bạn nghiên cứu tiếp bài toán sau: Bài toán 2: Cho f(x) là hàm lẻ, liên tục trên [-a; a]. Chứng minh rằng Đây là một bài tập khá quen thuộc với các bạn khi học tích phân và nhiều bạn đã biết cách giải. Xong các bạn hãy xem kỹ lời giải sau để “ phát hiện” ra vấn đề nhé! Lời giải: Đặt x=-t . Do f(x) là hàm lẻ nên f(-x)=-f(x) do đó Qua 2 bài toán trên, điểm chung của cách đặt ẩn phụ là gì? Câu trả lời là : Đặt ẩn phụ nhưng không làm thay đổi cận của tích phân. Vậy sử dụng suy nghĩ này vào bài toán thực tế như thế nào ? Các bạn hãy chú ý một số điểm sau: Bài toán 1, 2 có thể tổng quát thành : Chứng minh rằng nếu hàm f (x) liên tục và thoả mãn: f(a+b-x) =-f(x) thì . Việc chứng minh bài toán này xin dành cho độc giả (bằng cách đặt x=a+b-t là cách đặt mà cận không hề thay đổi!) Từ đó ta có cách đặt tổng quát khi gặp tích phân mà không thay đổi cận là đặt x=a+b-t. Bài toán 1 còn có cách giải khác khá hay để dẫn tới một “ suy nghĩ” mới như sau: Đặt x=1-t . Sử dụng kết quả chứng minh của bài toán 2 ta được I=0 ( do f(t)=-t3+3t là hàm số lẻ). Vậy “ suy nghĩ” mới ở đây là gì? Việc đặt ẩn phụ như vậy ta đã dẫn đến tích phân có cận “đối xứng” . Trong trường hợp tổng quát để dẫn đến cận “ đối xứng” khi gặp tích phân các bạn hãy đặt nhé! Bây giờ chúng ta cùng vận dụng suy nghĩ đó để giải một số bài toán sau: Bài toán 3: Tính tích phân ( Đề thi đại học năm 2000). Lời giải: Đặt x=-t ( cách đặt này đã không làm thay đổi cận của tích phân) . Khi đó . Chú ý: Bài toán 3 có dạng tổng quát sau: Nếu f(x) là hàm số liên tục, chẵn thì . Bài toán 4: Tính tích phân I = Thông thường khi gặp tích phân trên, hầu hết các bạn đều nghĩ đến phương pháp tính tích phân từng phần. Xong các bạn hãy thử làm như thế và so sánh với lời giải sau: Lời giải : Đặt Khi đó Đặt Chú ý: Bài toán 4 có thể tổng quát như sau: Cho hàm số f(x) liên tục và thoả mãn: f(a+b-x) = f(x) . Khi đó ( để chứng minh kết quả trên các bạn hãy đặt x= a+b-t ). Bài toán 5: Tính tích phân I = ( Đề thi khối A năm 2004) Với bài toán trên, cách đặt như thế nào để không thay đổi cận của tích phân. Lời giải: Đặt Khi đó ( cách đặt này đảm bảo cận không đổi !) . Chú ý: Bài toán 5 có thể tổng quát dạng với p(x) là đa thức chứa biến x; m,n,c là các hằng số . Ta có thể đặt hoặc đều giải được. Bài toán 6: Tính tích phân Lời giải: Đặt . Vậy Chú ý: Bài toán 6 có thể tổng quát thành các dạng sau: Qua 6 bài toán trên, tác giả muốn các bạn học sinh có thêm một cách nhìn mới để tiếp cận với phương pháp đặt ẩn phụ trong tính tích phân. Rất mong nhận được sự quan tâm trao đổi. Cuối cùng mời các bạn vận dụng vào một số bài tập sau: Tính các tích phân:
Tài liệu đính kèm: