Ôn tập Đại số tuyến tính

Ôn tập Đại số tuyến tính

Trong các kỳ thi tuyển sinh sau đại học, Đại số tuyến tính là môn cơ bản, là môn thi bắt buộc đối với mọi thí sinh thi vào sau đại học ngành toán - cụ thể là các chuyên ngành : PPGD, Đại số, Giải tích, Hình học.

Các bài viết này nhằm cung cấp cho các bạn đọc một cách có hệ thống và chọn lọc các kiến thức và kỹ năng cơ bản nhất của môn học Đại số tuyến tính với mục đích giúp những người dự thi các kỳ tuyển sinh sau đại học ngành toán có được sự chuẩn bị chủ động, tích cực nhất.

Vì là các bài ôn tập với số tiết hạn chế nên các kiến thức trình bày sẽ được chọn lọc và bám sát theo đề cương ôn tập vào sau đại học. Tuy nhiên, để dễ dàng hơn cho bạn đọc thứ tự các vấn đề có thể thay đổi. Cũng chính bởi các lý do trên các bài viết này không thể thay thế một giáo trình Đại số tuyến tính hoàn chỉnh.

pdf 7 trang Người đăng haha99 Lượt xem 1977Lượt tải 0 Download
Bạn đang xem tài liệu "Ôn tập Đại số tuyến tính", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ĐẠI SỐ TUYẾN TÍNH
PGS. TS Mỵ Vinh Quang
Ngày 21 tháng 4 năm 2006
Mở Đầu
Trong các kỳ thi tuyển sinh sau đại học, Đại số tuyến tính là môn cơ bản, là môn thi bắt
buộc đối với mọi thí sinh thi vào sau đại học ngành toán - cụ thể là các chuyên ngành : PPGD,
Đại số, Giải tích, Hình học.
Các bài viết này nhằm cung cấp cho các bạn đọc một cách có hệ thống và chọn lọc các kiến
thức và kỹ năng cơ bản nhất của môn học Đại số tuyến tính với mục đích giúp những người
dự thi các kỳ tuyển sinh sau đại học ngành toán có được sự chuẩn bị chủ động, tích cực nhất.
Vì là các bài ôn tập với số tiết hạn chế nên các kiến thức trình bày sẽ được chọn lọc và
bám sát theo đề cương ôn tập vào sau đại học. Tuy nhiên, để dễ dàng hơn cho bạn đọc thứ tự
các vấn đề có thể thay đổi. Cũng chính bởi các lý do trên các bài viết này không thể thay thế
một giáo trình Đại số tuyến tính hoàn chỉnh. Bạn đọc quan tâm có thể tham khảo thêm một
số sách viết về Đại số tuyến tính, chẳng hạn :
1. Nguyễn Viết Đông - Lê Thị Thiên Hương ...
Toán cao cấp Tập 2 - Nxb Giáo dục 1998
2. Jean - Marie Monier.
Đại số 1 - Nxb Giáo dục 2000
3. Ngô Thúc Lanh
Đại số tuyến tính - Nxb Đại học và Trung học chuyên nghiệp 1970
4. Bùi Tường Trí.
Đại số tuyến tính.
5. Mỵ Vinh Quang
Bài tập đại số tuyến tính.
Bài 1: ĐỊNH THỨC
Để hiểu được phần này, người đọc cầnphải nắm được khái niệm về ma trận và các phép
toán trên ma trận (phép cộng, trừ, nhân hai ma trận). Các khái niệm trên khá đơn giản, người
đọc có thể dễ dàng tìm đọc trong các sách đã dẫn ở trên.
1
1 Định nghĩa định thức
1.1 Định thức cấp 2, 3
• Cho A là ma trận vuông cấp 2 :
A =
[
a11 a12
a21 a22
]
định thức (cấp 2) của A là một số, ký hiệu detA (hoặc |A|) xác định như sau :
detA =
∣∣∣∣ a11 a12a21 a22
∣∣∣∣ = a11a22 − a12a21 (1)
• Cho A là ma trận vuông cấp 3 :
A =
 a11 a12 a13a21 a22 a23
a31 a32 a33

định thức (cấp 3) của A là một số ký hiệu detA (hoặc |A|), xác định như sau : detA =∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33
∣∣∣∣∣∣ = a11a22a33+a12a23a31+a13a21a32−a13a22a31−a11a23a32−a12a21a33 (2)
Công thức khai triển ( 2 ) thường đuợc nhớ theo quy tắc Sarrus như sau :
Ví dụ :
∣∣∣∣∣∣
−1 2 3
1 −2 1
−1 0 4
∣∣∣∣∣∣ = [(−1)(−2).4+ 2.1.(−1) + 1.0.3]− [3.(−2).(−1) + 1.0.(−1) + 2.1.4] = −8
Nếu ta ký hiệu Sn là tập hợp các phép thế bậc n thì các công thức ( 1 ) và ( 2 ) có thể
viết lại như sau :
detA =
∑
f∈S2
s(f)a1f(1)a2f(2) và detA =
∑
f∈S3
s(f)a1f(1)a2f(2)a3f(3)
Từ đó gợi ý cho ta cách định nghĩa định thức cấp n như sau.
2
1.2 Định thức cấp n
Cho A là ma trận vuông cấp n :
A =

a11 a12 · · · a1n
a21 a22 · · · a2n
...
...
. . .
...
an1 an2 · · · ann

định thức ( cấp n) của ma trận A là một số, ký hiệu detA (hoặc |A|), xác định như sau :
detA =
∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n
...
...
. . .
...
an1 an2 · · · ann
∣∣∣∣∣∣∣∣∣ =
∑
f∈Sn
s(f)a1f(1)a2f(2)...anf(n) (3)
Chắc chắn là đối với một số bạn đọc, (nhất là bạn đọc không thạo về phép thế) định nghĩa
định thức tương đối khó hình dung. Tuy nhiên, rất may là khi làm việc với định thức, (kể cả
khi tính định thức) định nghĩa trên hiếm khi được sử dụng mà ta chủ yếu sử dụng các tính
chất của định thức. Bởi vậy, bạn đọc nếu chưa có đủ thời gian có thể tạm bỏ qua định nghĩa
trên và cần phải nắm vững các tính chất sau của định thức.
2 Các tính chất của định thức
2.1 Tính chất 1
Định thức không thay đổi qua phép chuyển vị, tức là : detAt = detA (At : ma trận chuyển
vị của ma trận A)
Ví dụ : ∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9
∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 4 7
2 5 8
3 6 9
∣∣∣∣∣∣
Chú ý : Từ tính chất này, một mệnh đề về định thức nếu đúng với dòng thì cũng đúng với
cột và ngược lại.
2.2 Tính chất 2
Nếu ta đổi chổ hai dòng bất kỳ (hoặc 2 cột bất kỳ) của định thức thì định thức đổi dấu.
Ví dụ : ∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9
∣∣∣∣∣∣ = −
∣∣∣∣∣∣
7 8 9
4 5 6
1 2 3
∣∣∣∣∣∣
3
2.3 Tính chất 3
Nếu tất cả các phần tử của một dòng (hoặc một cột) của định thức đuợc nhân với λ thì
định thức mới bằng định thức ban đầu nhân với λ.
Ví dụ : ∣∣∣∣∣∣
1 2 3
4 2 6
6 4 9
∣∣∣∣∣∣ = 2
∣∣∣∣∣∣
1 2 3
2 1 3
6 4 9
∣∣∣∣∣∣
Chú ý : Từ tính chất này ta có nếu A là ma trận vuông cấp n thì det (λA) = λn detA
2.4 Tính chất 4
Cho A là ma trận vuông cấp n. Giả sử dòng thứ i của ma trận A có thể biểu diễn duới
dạng : aij = a
′
ij + a
′′
ij với j = 1, 2, ..., n. Khi đó ta có :
detA =
∣∣∣∣∣∣
... ... ... ...
a′i1 + a
′′
i1 a
′
i2 + a
′′
i2 ... a
′
in + a
′′
in
... ... ... ...
∣∣∣∣∣∣ =
=
∣∣∣∣∣∣
... ... ... ...
a′i1 a
′
i2 ... a
′
in
... ... ... ...
∣∣∣∣∣∣+
∣∣∣∣∣∣
... ... ... ...
a′′i1 a
′′
i2 ... a
′′
in
... ... ... ...
∣∣∣∣∣∣
Trong đó các dòng còn lại của 3 định thức ở 2 vế là hoàn toàn như nhau và chính là các dòng
còn lại của ma trận A. Tất nhiên ta cũng có kết quả tương tự đối với cột.
Ví dụ : ∣∣∣∣∣∣
1 2 3
4 5 6
7 8 9
∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 2 3
6 5 4
7 8 9
∣∣∣∣∣∣+
∣∣∣∣∣∣
1 2 3
−2 0 2
7 8 9
∣∣∣∣∣∣
Chú ý : Các tính chất 2, 3, 4 chính là tính đa tuyến tính thay phiên của định thức.
Từ các tính chất trên, dễ dàng suy ra các tính chất sau của định thức :
2.5 Tính chất 5
Định thức sẽ bằng 0 nếu :
1. Có hai dòng (hai cột) bằng nhau hoặc tỉ lệ.
2. Có một dòng (một cột) là tổ hợp tuyến tính của các dòng khác (cột khác).
2.6 Tính chất 6
Định thức sẽ không thay đổi nếu :
1. Nhân một dòng (một cột) với một số bất kỳ rồi cộng vào dòng khác (cột khác).
2. Cộng vào một dòng (một cột) một tổ hợp tuyến tính của các dòng khác (cột khác)
4
Ví dụ : ∣∣∣∣∣∣∣∣
1 1 −1 0
2 1 3 2
−1 0 1 2
−3 1 2 4
∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1 1 −1 0
0 −1 5 2
0 1 0 2
0 4 −1 4
∣∣∣∣∣∣∣∣
(Lý do: nhân dòngmộtvới (−2) cộng vào dòng 2, nhân dòng một với 1 cộng vào dòng 3, nhân
dòngmộtvới 3 cộng vào dòng 4).
Để tính định thức, ngoài việc sử dụng các tính chất trên của định thức ta còn rất hay sử
dụng định lý Laplace dưới đây.
3 Định lý Laplace
3.1 Định thức con và phần bù đại số
Cho A là ma trận vuông cấp n, k là số tự nhiên 1 ≤ k ≤ n. Các phần tử nằm trên giao của
k dòng bất kỳ, k cột bất kỳ của A làm thành một ma trận vuông cấp k của A. Định thức của
ma trận này gọi là một định thức con cấp k của ma trận A.
Đặc biệt, cho trước 1 ≤ i, j ≤ n, nếu ta xóa đi dòng i, cột j của A ta sẽ được ma trận con
cấp n− 1 của A, ký hiệu là Mij. Khi đó, Aij = (−1)i+j detMij được gọi là phần bù đại số của
phần tử (A)ij. ((A)ij là phần tử nằm ở hàng i, cột j của ma trận A)
3.2 Định lý Laplace
Cho A là ma trận vuông cấp n :
A =

a11 a12 ... a1j ... a1n
a21 a22 ... a2j ... a2n
...
...
...
...
...
...
ai1 ai2 ... aij ... ain
...
...
...
...
...
...
an1 an2 ... anj ... ann

Khi đó ta có :
1. Khai triển định thức theo dòng i
detA = ai1.Ai1 + ai2.Ai2 + ...+ ain.Ain =
n∑
k=1
aik.Aik
2. Khai triển định thức theo cột j
detA = a1j.A1j + a2j.A2j + ...+ anj.Anj =
n∑
k=1
akj.Akj
Từ định lý Laplace, ta có thể chứng minh được 2 tính chất quan trọng sau của định thức :
5
3.3 Tính chất 1
Nếu A là ma trận tam giác trên, (hoặc tam giác dưới) thì detA bằng tích của tất cả các
phần tử trên đường chéo chính, tức là :∣∣∣∣∣∣∣∣∣
a11 0 0 ... 0
a21 a22 0 ... 0
...
...
...
...
...
an1 an2 an3 ... ann
∣∣∣∣∣∣∣∣∣ = a11.a22...ann
3.4 Tính chất 2
Nếu A,B là các ma trận vuông cấp n thì det(AB) = detA detB
4 Các ví dụ và áp dụng
Nhờ có định lý Laplace, để tính một định thức cấp cao (cấp > 3) ta có thể khai triển định
thức theo một dòng hoặc một cột bất kỳ để đưa về tính các định thức cấp bé hơn. Cứ như vậy
sau một số lần sẽ đưa được về việc tính các định thức cấp 2, 3. Tuy nhiên, trong thực tế nếu
làm như vậy thì số lượng phép tính khá lớn. Bởi vậy ta làm như sau thì số lượng phép tính sẽ
giảm đi nhiều :
1. Chọn dòng (cột) có nhiều số 0 nhất để khai triển định thức theo dòng (cột) đó.
2. Sử dụng tính chất 2.6 để biến đổi định thức sao cho dòng đã chọn (cột đã chọn) trở thành
dòng (cột) chỉ có một số khác 0.
3. Khai triển định thức theo dòng (cột) đó. Khi đó việc tính một định thức cấp n quy về
việc tính một định thức cấp n−1. Tiếp tục lặp lại quá trình trên cho định thức cấp n−1,
cuối cùng ta sẽ dẫn về việc tính định thức cấp 2, 3.
Ví dụ 1
Tính ∣∣∣∣∣∣∣∣∣∣
1 0 1 −1 2
0 1 1 2 −1
1 2 1 0 1
−1 0 1 0 2
−1 1 1 1 1
∣∣∣∣∣∣∣∣∣∣
Ta chọn cột 2 để khai triển nhưng trước khi khai triển, ta biến đổi định thức như sau :
nhân dòng 2 với (-2) cộng vào dòng 3. Nhân dòng 2 với (-1) cộng vào dòng 5. Định thức đã cho
sẽ bằng (Tính chất 2.6 )∣∣∣∣∣∣∣∣∣∣
1 0 1 −1 2
0 1 1 2 −1
1 0 −1 −4 3
−1 0 1 0 2
−1 0 0 −1 2
∣∣∣∣∣∣∣∣∣∣
Khai triển theo cột 2
=
∣∣∣∣∣∣∣∣
1 1 −1 2
1 −1 −4 3
−1 1 0 2
−1 0 −1 2
∣∣∣∣∣∣∣∣
6
Để tính định thức cấp 4, ta lại chọn dòng 4 để khai triển, trước khi khai triển ta lại biến
đổi định thức như sau : nhân cột 1 với (-1) rồi cộng vào cột 3, nhân cột 1 với 2 rồi cộng vào
cột 4. Định thức đã cho sẽ bằng :∣∣∣∣∣∣∣∣
1 1 −2 4
1 −1 −5 5
−1 1 1 0
−1 0 0 0
∣∣∣∣∣∣∣∣
(Khai triển theo dòng 4)
= (−1).(−1)5
∣∣∣∣∣∣
1 −2 4
−1 −5 5
1 1 0
∣∣∣∣∣∣ = 1
Ví dụ 2 Giải phương trình∣∣∣∣∣∣∣∣
1 x x− 1 x+ 2
0 0 x2 − 1 0
x 1 x x− 2
0 0 x5 + 1 x100
∣∣∣∣∣∣∣∣ = 0
Giải :
V T
(Khai triển theo dòng 2 )
= (−1)5(x2 − 1)
∣∣∣∣∣∣
1 x x+ 2
x 1 x− 2
0 0 x100
∣∣∣∣∣∣
(Khai triển theo dòng 3)
= (1− x2).x100
∣∣∣∣ 1 xx 1
∣∣∣∣ = (1− x2)2.x100
Vậy phương trình đã cho tương đương với (1− x2)2.x100 = 0⇐⇒ x = 0, x = ±1
Bài Tập
1. Tính∣∣∣∣∣∣
α β γ
β γ α
γ α β
∣∣∣∣∣∣ trong đó α, β, γ, là các nghiệm của phương trình :x3 + px+ q = 0
2. Giải phương trình : ∣∣∣∣∣∣∣∣
1 x x2 x3
1 2 4 8
1 3 9 27
1 4 16 64
∣∣∣∣∣∣∣∣ = 0
3. Chứng minh : ∣∣∣∣∣∣
a1 + b1 b1 + c1 c1 + a1
a2 + b2 b2 + c2 c2 + a2
a3 + b3 b3 + c3 c3 + a3
∣∣∣∣∣∣ = 2.
∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3
∣∣∣∣∣∣
4. Chứng minh : ∣∣∣∣∣∣∣∣
a2 (a+ 1)2 (a+ 2)2 (a+ 3)2
b2 (b+ 1)2 (b+ 2)2 (b+ 3)2
c2 (c+ 1)2 (c+ 2)2 (c+ 3)2
d2 (d+ 1)2 (d+ 2)2 (d+ 3)2
∣∣∣∣∣∣∣∣ = 0
7

Tài liệu đính kèm:

  • pdfbai1.pdf