Nguyên hàm, tích phân và ứng dụng

Nguyên hàm, tích phân và ứng dụng

Phương pháp tìm nguyên hàm:

• Phân tích tích phân đã cho thành những tích phân đơn giản có công thức trong bảng nguyên hàm cơ bản. Cách phân tích : Dùng biến đổi đại số như mũ, lũy thừa, các hằng đẳng thức . và biến đổi lượng giác bằng các công thức lượng giác cơ bản.

• Phương pháp đổi biến số và nguyên hàm từng phần

 

doc 6 trang Người đăng ngochoa2017 Lượt xem 1012Lượt tải 0 Download
Bạn đang xem tài liệu "Nguyên hàm, tích phân và ứng dụng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG
A. NGUYÊN HÀM
1. Bảng tính nguyên hàm cơ bản: 
Bảng 1 Bảng 2
Hàm số f(x)
Họ nguyên hàm F(x)+C
Hàm số f(x)
Họ nguyên hàm F(x)+C
a ( hằng số)
ax + C
sinx
-cosx + C
sin(ax+b)
cosx
Sinx + C
cos(ax+b)
tgx + C
-cotgx + C
2. Phương pháp tìm nguyên hàm:
Phân tích tích phân đã cho thành những tích phân đơn giản có công thức trong bảng nguyên hàm cơ bản. Cách phân tích : Dùng biến đổi đại số như mũ, lũy thừa, các hằng đẳng thức ... và biến đổi lượng giác bằng các công thức lượng giác cơ bản.
Phương pháp đổi biến số và nguyên hàm từng phần
B. TÍCH PHÂN
1. Định nghĩa: Cho hàm số y=f(x) liên tục trên . Giả sử F(x) là một nguyên hàm của hàm số f(x) thì:
2. Các tính chất của tích phân:
Tính chất 1: Nếu hàm số y=f(x) xác định tại a thì : 
Tính chất 2: 
Tính chất 3: Nếu f(x) = c không đổi trên thì: 
Tính chất 4: Nếu f(x) liên tục trên và thì 
Tính chất 5: Nếu hai hàm số f(x) và g(x) liên tục trên và thì
Tính chất 6: Nếu f(x) liên tục trên và thì
Tính chất 7: Nếu hai hàm số f(x) và g(x) liên tục trên thì
Tính chất 8: Nếu hàm số f(x) liên tục trên và k là một hằng số thì
Tính chất 9: Nếu hàm số f(x) liên tục trên và c là một hằng số thì
Tính chất 10: Tích phân của hàm số trên cho trước không phụ thuộc vào biến số , nghĩa là : 
Bài 1: Tính các tích phân sau:
1) 2) 3) 4) 5) 6) 7) 8) 	 9) 10) 11) 12). 
13) 14) 15) 16) 17) 18) 
Bài 2: 
1) 	2) 3) 4) 
5) 6) 	 7) 8) 
Bài 3: 
1) Tìm các hằng số A,B để hàm số thỏa mãn đồng thời các điều kiện
	 và 
2) Tìm các giá trị của hằng số a để có đẳng thức : 
II. TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ :
	1) DẠNG 1:Tính I = bằng cách đặt t = u(x)
Công thức đổi biến số dạng 1: 
Cách thực hiện:
Bước 1: Đặt 
Bước 2: Đổi cận : 
Bước 3: Chuyển tích phân đã cho sang tích phân theo biến t ta được
	 (tiếp tục tính tích phân mới)
Tính các tích phân sau:
1) 	 2) 	 3)	 4)
5) 6) 7) 	 8) 
9) 10) 11) 12) 
13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 
	2) DẠNG 2: Tính I = bằng cách đặt x = 
Công thức đổi biến số dạng 2: 
Cách thực hiện:
Bước 1: Đặt 
Bước 2: Đổi cận : 
Bước 3: Chuyển tích phân đã cho sang tích phân theo biến t ta được
	 (tiếp tục tính tích phân mới)
Tính các tích phân sau:
1) 	 2) 	 3) 	 4)
5) 6) 7) 	 8) 	
9) 	 10) 11) 12) 
13) 14) 15) 16) 
17) 18) 
Tính các tích phân sau:
1) 2) 3) 4) 5) 6) 7) 
II. TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN:
Công thức tích phân từng phần: 
	Hay: 
Cách thực hiện:
Bước 1: Đặt 
Bước 2: Thay vào công thức tích phân từng từng phần : 
 Bước 3: Tính và 
Tính các tích phân sau:
 1) 	 2) 	 3) 	
 4) 	 5) 6) 	
 7) 	 8) 	 9) 	
 10) 	 11) 12) 
 13) 14) 15) 
 16) 17) 18) 
 19) 20) 
C. ỨNG DỤNG
I. ỨNG DỤNG TÍCH PHÂN TÍNH DIỆN TÍCH HÌNH PHẲNG:
 Công thức: 
Tính diện tích của các hình phẳng sau:
1) (H1): 	2) (H2) : 	3) (H3):
4) (H4):	5) (H5):	6) (H6):
7) (H7):	 8) (H8) : 	9) (H9): 
10) (H10): 11) 	 12) 
II. ỨNG DỤNG TÍCH PHÂN TÍNH THỂ TÍCH VẬT THỂ TRÒN XOAY.
 Công thức:
Bài 1: Cho miền D giới hạn bởi hai đường : x2 + x - 5 = 0 ; x + y - 3 = 0
	Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Ox
Bài 2: Cho miền D giới hạn bởi các đường : 
	Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Oy
Bài 3: Cho miền D giới hạn bởi hai đường : và y = 4
	Tính thể tích khối tròn xoay được tạo nên do D quay quanh:
	a) Trục Ox
	b) Trục Oy
Bài 4: Cho miền D giới hạn bởi hai đường : .
	Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Ox

Tài liệu đính kèm:

  • docchuyendetichphantoantap.doc