Mô tả chi tiết:
I. Phần chung:
Câu 1: Tính giới hạn của hàm số và dãy số (gồm 2 câu nhỏ)
Câu 2: Tìm điều kiện để hàm số liên tục tại một điểm hoặc xét tính liên tục của hàm số trên tập xác định của nó.
Câu 3: Tính đạo hàm của hàm số (gồm 2 câu nhỏ)
Câu 4: Bài toán hình học không gian (gồm 3 câu nhỏ)
II. Phần riêng:
1) Theo chương trình chuẩn
Câu 5a: Ứng dụng tính liên tục của hàm số để chứng minh sự tồn tại nghiệm của phương trình.
Câu 6a: Sử dụng đạo hàm để giải phương trình, bất phương trình; viết phương trình tiếp tuyến của đồ thị hàm số tại một điểm thuộc đồ thị (gồm 2 câu nhỏ).
Matran đề thi học kỳ 2 – Toán 11 Nâng cao (2010 – 2011) Chủ đề hoặc mạch kiến thức, kỹ năng Số tiết tỉ lệ Tầm quan trọng Trọng số Tổng điểm thang điểm 10 Giới hạn 10 25 35 2 70 2.0 Hàm số liên tục 3 8 15 3 45 2.0 Đạo hàm 15 35 20 2 40 3.0 Quan hệ vuông góc 14 32 30 3 90 3.0 Tổng 42 100 100 245 10.0 Chủ đề - Mạch KTKN Mức nhận thức Cộng 1 2 3 4 Phần chung Giới hạn 1 1,0 1 1,0 2 2,0 Hàm số liên tục 1 1,0 1 1,0 Đạo hàm 1 0,5 1 0,5 2 1,0 Quan hệ vuông góc 1 1,0 1 1,0 1 1,0 3 3,0 Tổng phần chung 3 2,5 3 2,5 2 2,0 8 7,0 Phần riêng Liên tục 1 1,0 1 1,0 Đạo hàm 2 1,0 2 2,0 Tổng phần riêng 3 3,0 3 3,0 Tổng toàn bài 3 2,5 6 5,5 2 2,0 11 10,0 KHUNG MA TRẬN ĐỀ KIỂM TRA TOÁN 11 HỌC KÌ 2 (Dùng cho loại đề kiểm tra TL) Ma trận 1 Chủ đề - Mạch KTKN Mức nhận thức Cộng 1 2 3 4 Phần chung Giới hạn 1 1,0 1 1,0 2 2,0 Hàm số liên tục 1 1,0 1 1,0 Đạo hàm 1 0,5 1 0,5 2 1,0 Quan hệ vuông góc 1 1,0 1 1,0 1 1,0 3 3,0 Tổng phần chung 3 2,5 3 2,5 2 2,0 8 7,0 Phần riêng Liên tục 1 1,0 1 1,0 Đạo hàm 2 1,0 2 2,0 Tổng phần riêng 3 3,0 3 3,0 Tổng toàn bài 3 2,5 6 5,5 2 2,0 11 10,0 Diễn giải: 1) Chủ đề – Hình học: 3,0 điểm – Đại số & Giải tích: 7,0 điểm + Giới hạn: 2,0 điểm + Liên tục: 2,0 điểm + Đạo hàm: 3,0 điểm 2) Mức nhận biết: – Chuẩn hoá: 8,0 điểm (hoặc 7,0 điểm) – Phân hoá: 2,0 điểm (hoặc 3,0 điểm) Mô tả chi tiết: I. Phần chung: Câu 1: Tính giới hạn của hàm số và dãy số (gồm 2 câu nhỏ) Câu 2: Tìm điều kiện để hàm số liên tục tại một điểm hoặc xét tính liên tục của hàm số trên tập xác định của nó. Câu 3: Tính đạo hàm của hàm số (gồm 2 câu nhỏ) Câu 4: Bài toán hình học không gian (gồm 3 câu nhỏ) II. Phần riêng: 1) Theo chương trình chuẩn Câu 5a: Ứng dụng tính liên tục của hàm số để chứng minh sự tồn tại nghiệm của phương trình. Câu 6a: Sử dụng đạo hàm để giải phương trình, bất phương trình; viết phương trình tiếp tuyến của đồ thị hàm số tại một điểm thuộc đồ thị (gồm 2 câu nhỏ). 2) Theo chương trình nâng cao Câu 5b: Ứng dụng tính liên tục của hàm số để chứng minh sự tồn tại nghiệm của phương trình. Câu 6b: Sử dụng đạo hàm để giải phương trình, bất phương trình; viết phương trình tiếp tuyến của đồ thị hàm số với hệ số góc cho trước (gồm 2 câu nhỏ).
Tài liệu đính kèm: