CHƯƠNG 1: CÔNG THỨC LƯỢNG GIÁC
I. Định nghĩa
Trên mặt phẳng Oxy cho đường tròn lượng giác tâm O bán kính R=1 và điểm M
trên đường tròn lượng giác mà sđ AM q = β với 0 2 ≤ β ≤ π
CHƯƠNG 1: CÔNG THỨC LƯỢNG GIÁC I. Định nghĩa Trên mặt phẳng Oxy cho đường tròn lượng giác tâm O bán kính R=1 và điểm M trên đường tròn lượng giác mà sđqAM = β với 0 2≤ β ≤ π Đặt k2 ,k Zα = β+ π ∈ Ta định nghĩa: sin OKα = cos OHα = sintg cos αα = α với cos 0α ≠ coscot g sin αα = α với sin 0α ≠ II. Bảng giá trị lượng giác của một số cung (hay góc) đặc biệt Góc α Giá trị ( )o0 0 ( )o306π ( )o454π ( )o603π ( )o902π sinα 0 1 2 2 2 3 2 1 cosα 1 3 2 2 2 1 2 0 tgα 0 3 3 1 3 || cot gα || 3 1 3 3 0 III. Hệ thức cơ bản 2 2sin cos 1α + α = 2 2 11 tg cos + α = α với ( )k k Z2 πα ≠ + π ∈ 2 2 1t cot g sin + = α với ( )k k Zα ≠ π ∈ IV. Cung liên kết (Cách nhớ: cos đối, sin bù, tang sai π ; phụ chéo) a. Đối nhau: α và −α ( )sin sin−α = − α ( )cos cos−α = α ( ) ( )tg tg−α = − α ( ) ( )cot g cot g−α = − α MATHVN.COM www.MATHVN.com b. Bù nhau: α và π − α ( ) ( ) ( ) ( ) sin sin cos cos tg tg cot g cot g π −α = α π−α = − α π−α = − α π−α = − α c. Sai nhau π : và α π + α ( ) ( ) ( ) ( ) sin sin cos cos tg t g cot g cot g π+ α = − α π+α = − α π+α = α π+α = α d. Phụ nhau: α và 2 π −α sin cos 2 cos sin 2 tg cot g 2 cot g tg 2 π⎛ ⎞− α = α⎜ ⎟⎝ ⎠ π⎛ ⎞− α = α⎜ ⎟⎝ ⎠ π⎛ ⎞− α = α⎜ ⎟⎝ ⎠ π⎛ ⎞− α = α⎜ ⎟⎝ ⎠ e.Sai nhau 2 π : và α 2 π + α sin cos 2 cos sin 2 tg cot g 2 cot g tg 2 π⎛ ⎞+ α = α⎜ ⎟⎝ ⎠ π⎛ ⎞+ α = − α⎜ ⎟⎝ ⎠ π⎛ ⎞+ α = − α⎜ ⎟⎝ ⎠ π⎛ ⎞+ α = − α⎜ ⎟⎝ ⎠ MATHVN.COM www.MATHVN.com f. ( ) ( ) ( ) ( ) ( ) ( ) + π = − ∈ + π = − ∈ + π = ∈ + π = k k sin x k 1 sin x,k Z cos x k 1 cosx,k Z tg x k tgx,k Z cot g x k cot gx V. Công thức cộng ( ) ( ) ( ) sin a b sinacosb sin bcosa cos a b cosacosb sinasin b tga tgbtg a b 1 tgatgb ± = ± ± = ±± = ∓ ∓ VI. Công thức nhân đôi = = − = − = = − −= 2 2 2 2 2 2 sin2a 2sinacosa cos2a cos a sin a 1 2sin a 2cos a 1 2tgatg2a 1 tg a cot g a 1cot g2a 2cot ga − VII. Công thức nhân ba: 3 3 sin3a 3sina 4sin a cos3a 4cos a 3cosa = − = − VIII. Công thức hạ bậc: ( ) ( ) 2 2 2 1sin a 1 cos2a 2 1cos a 1 cos2a 2 1 cos2atg a 1 cos2a = − = + −= + IX. Công thức chia đôi Đặt at tg 2 = (với ) a k2≠ π + π MATHVN.COM www.MATHVN.com 22 2 2 2tsina 1 t 1 tcosa 1 t 2ttga 1 t = + −= + = − X. Công thức biến đổi tổng thành tích ( ) ( ) a b a bcosa cosb 2cos cos 2 2 a b a bcosa cosb 2sin sin 2 2 a b a bsina sin b 2cos sin 2 2 a b a bsina sin b 2cos sin 2 2 sin a b tga tgb cosacosb sin b a cot ga cot gb sina.sin b + −+ = + −− = − + −+ = + −− = ±± = ±± = XI. Công thức biển đổi tích thành tổng ( ) ( ) ( ) ( ) ( ) ( ) 1cosa.cosb cos a b cos a b 2 1sina.sin b cos a b cos a b 2 1sina.cosb sin a b sin a b 2 = ⎡ + + −⎣ ⎦ − ⎤ = ⎡ + − −⎣ ⎦⎤ = ⎡ + + − ⎤⎣ ⎦ Bài 1: Chứng minh 4 4 6 6 sin a cos a 1 2 sin a cos a 1 3 + − =+ − Ta có: ( )24 4 2 2 2 2 2sin a cos a 1 sin a cos a 2sin acos a 1 2sin acos a+ − = + − − = − 2 Và: ( )( ) ( ) 6 6 2 2 4 2 2 4 4 4 2 2 2 2 2 2 2 2 sin a cos a 1 sin a cos a sin a sin acos a cos a 1 sin a cos a sin acos a 1 1 2sin acos a sin acos a 1 3sin acos a + − = + − + = + − − = − − − = − − MATHVN.COM www.MATHVN.com Do đó: 4 4 2 2 6 6 2 2 sin a cos a 1 2sin acos a 2 sin a cos a 1 3sin acos a 3 + − −= =+ − − Bài 2: Rút gọn biểu thức ( )2 2 1 cosx1 cosxA 1 sin x sin x ⎡ ⎤−+= = +⎢ ⎥⎢ ⎥⎣ ⎦ Tính giá trị A nếu 1cosx 2 = − và x 2 π < < π Ta có: 2 2 2 1 cosx sin x 1 2cosx cos xA sin x sin x ⎛ ⎞+ + − += ⎜ ⎟⎝ ⎠ ( ) 2 2 1 cosx1 cosxA . sin x sin x −+⇔ = ( )2 2 3 3 2 1 cos x 2sin x 2A sin x sin x sin x −⇔ = = = (với sinx 0≠ ) Ta có: 2 2 1 3sin x 1 cos x 1 4 4 = − = − = Do: x 2 π Vậy 3sin x 2 = Do đó 2 4 4A sin x 33 = = = 3 Bài 3: Chứng minh các biểu thức sau đây không phụ thuộc x: a. A = − 4 4 2 2 22cos x sin x sin xcos x 3sin x+ + b. 2 cot gx 1 tgx 1 cot gx 1 + − −B = + a. Ta có: 4 4 2 2A 2cos x sin x sin xcos x 3sin x= − + + 2 ( ) ( ) ( ) ( ) 24 2 2 2 2 4 2 4 2 4 A 2cos x 1 cos x 1 cos x cos x 3 1 cos x A 2cos x 1 2cos x cos x cos x cos x 3 3cos x ⇔ = − − + − + − ⇔ = − − + + − + − 2 A 2⇔ = (không phụ thuộc x) b. Với điều kiện sinx.cosx 0,tgx 1≠ ≠ Ta có: 2 cot gxB tgx 1 cot gx 1 1+= +− − MATHVN.COM www.MATHVN.com 1 1 2 2tgxB 1tgx 1 tgx 1 1 tgx1 tgx + +⇔ = + = +− −− 1 tgx − ( )2 1 tgx 1 tgxB 1 tgx 1 tgx 1 − − −⇔ = = = −− − (không phụ thuộc vào x) Bài 4: Chứng minh ( )2 2 2 2 2 2 2 2 1 cosa1 cosa cos b sin c1 cot g bcot g c cot ga 1 2sina sin a sin bsin c ⎡ ⎤−+ −− + − =⎢ ⎥⎢ ⎥⎣ ⎦ − Ta có: * 2 2 2 2 2 2 cos b sin c cot g b.cot g c sin b.sin c − − 2 2 2 2 2 cotg b 1 cot g bcot g c sin c sin b = − − ( ) ( )2 2 2 2 2cot g b 1 cot g c 1 cot g b cot g bcot g c 1= + − + − = − (1) * ( )2 2 1 cosa1 cosa 1 2sina sin a ⎡ ⎤−+ −⎢ ⎥⎢ ⎥⎣ ⎦ ( )2 2 1 cosa1 cosa 1 2sina 1 cos a ⎡ ⎤−+= −⎢ ⎥−⎢ ⎥⎣ ⎦ 1 cosa 1 cosa1 2sina 1 cosa + −⎡ ⎤= −⎢ ⎥+⎣ ⎦ 1 cosa 2cosa. c 2sina 1 cosa += =+ ot ga (2) Lấy (1) + (2) ta được điều phải chứng minh xong. Bài 5: Cho tùy ý với ba góc đều là nhọn. ABCΔ Tìm giá trị nhỏ nhất của P tgA.tgB.tgC= Ta có: A B C+ = π − Nên: ( )tg A B tgC+ = − tgA tgB tgC 1 tgA.tgB +⇔ =− − + tgA tgB tgC tgA.tgB.tgC⇔ + = − + Vậy: P tgA.tgB.tgC tgA tgB tgC= = + MATHVN.COM www.MATHVN.com Áp dụng bất đẳng thức Cauchy cho ba số dương tg ta được A,tgB,tgC 3tgA tgB tgC 3 tgA.tgB.tgC+ + ≥ 3P 3 P⇔ ≥ 3 2P 3 P 3 3 ⇔ ≥ ⇔ ≥ Dấu “=” xảy ra = =⎧ π⎪⇔ ⇔ =⎨ π< <⎪⎩ tgA tgB tgC A B C 30 A,B,C 2 = = Do đó: MinP 3 3 A B C 3 π= ⇔ = = = Bài 6 : Tìm giá trị lớn nhất và nhỏ nhất của a/ 8 4y 2sin x cos 2x= + b/ 4y sin x cos= − x a/ Ta có : 4 41 cos2xy 2 cos 2x 2 −⎛ ⎞= +⎜ ⎟⎝ ⎠ Đặt với thì t cos2x= 1 t 1− ≤ ≤ ( )4 41y 1 t 8 = − + t => ( )3 31y ' 1 t 4t 2 = − − + Ta có : Ù ( ) y ' 0= 3 31 t 8t− = ⇔ 1 t 2t− = ⇔ 1t 3 = Ta có y(1) = 1; y(-1) = 3; 1 1y 3 2 ⎛ ⎞ =⎜ ⎟⎝ ⎠ 7 Do đó : và ∈ = \x y 3Max ∈ = \x 1yMin 27 b/ Do điều kiện : sin và co nên miền xác định x 0≥ s x 0≥ π⎡ ⎤= π + π⎢ ⎥⎣ ⎦D k2 , k22 với ∈ ]k Đặt t cos= x x với thì 0 t 1≤ ≤ 4 2 2t cos x 1 sin= = − Nên 4sin x 1 t= − Vậy 8 4y 1 t= − − t trên [ ]D' 0,1= Thì ( ) −= − < − 3 748 ty ' 1 0 2. 1 t [ )∀ ∈t 0; 1 Nên y giảm trên [ 0, 1 ]. Vậy : ( )∈ = =x Dmax y y 0 1, ( )∈ = = −x Dmin y y 1 1 MATHVN.COM www.MATHVN.com Bài 7: Cho hàm số 4 4y sin x cos x 2msin x cos= + − x Tìm giá trị m để y xác định với mọi x Xét 4 4f (x) sin x cos x 2msin x cos x= + − ( ) ( )22 2 2f x sin x cos x msin 2x 2sin x cos x= + − − 2 ( ) 21f x 1 sin 2x msin2x 2 = − − Đặt : với t sin 2x= [ ]t 1,∈ − 1 y xác định x∀ ⇔ ( )f x 0 x R≥ ∀ ∈ ⇔ 211 t [ ]mt 2 − − ≥ 0 t 1,1−∀ ∈ ⇔ ( ) 2g t t 2mt 2 0= + − ≤ [ ]t 1,1− t ∀ ∈ Do ∀ nên g(t) có 2 nghiệm phân biệt t2' m 2 0Δ = + > m 1, t2 Lúc đó t t1 t2 g(t) + 0 - 0 Do đó : yêu cầu bài toán ⇔ 1 2t 1 1≤ − < ≤ ⇔ ⇔ ( )( ) 1g 1 0 1g 1 0 − ≤⎧⎪⎨ ≤⎪⎩ 2m 1 0 2m 1 0 − − ≤⎧⎨ − ≤⎩ ⇔ 1m 2 1m 2 −⎧ ≥⎪⎪⎨⎪ ≤⎪⎩ ⇔ 1 1m 2 2 − ≤ ≤ Cách khác : g t ( ) 2t 2mt 2 0= + − ≤ [ ]t 1,∀ ∈ − 1 { } [ , ] max ( ) max ( ), ( ) t g t g g ∈ − ⇔ ≤ ⇔ − ≤ 11 0 1 1 0 { }max ), )m m⇔ − − − + ≤2 1 2 1 0⇔ 1m 2 1m 2 −⎧ ≥⎪⎪⎨ ⎪ ≤⎪⎩ m⇔− ≤ ≤1 1 2 2 Bài 8 : Chứng minh 4 4 4 43 5 7A sin sin sin sin 16 16 16 16 2 π π π π= + + + 3= Ta có : 7sin sin cos 16 2 16 16 π π π π⎛ ⎞= − =⎜ ⎟⎝ ⎠ π π π⎛ ⎞= − =⎜ ⎟⎝ ⎠ 5 5sin cos cos 16 2 16 16 π3 MATHVN.COM www.MATHVN.com Mặt khác : ( )24 4 2 2 2sin cos sin cos 2sin cosα + α = α + α − α α2 2 21 2sin cos= − α α 211 sin 2 2 = − α Do đó : 4 4 4 47 3A sin sin sin sin 16 16 16 16 π π π π= + + + 5 4 4 4 43 3sin cos sin cos 16 16 16 16 π π π⎛ ⎞ ⎛= + + +⎜ ⎟ ⎜⎝ ⎠ ⎝ π ⎞⎟⎠ 2 21 11 sin 1 sin 2 8 2 8 3π π⎛ ⎞ ⎛= − + −⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎞⎟⎠ 2 21 32 sin sin 2 8 8 π π⎛ ⎞= − +⎜ ⎟⎝ ⎠ 2 212 sin cos 2 8 8 π π⎛ ⎞= − +⎜ ⎟⎝ ⎠ π π=⎝ ⎠ 3do sin cos 8 8 ⎛ ⎞⎜ ⎟ 1 32 2 2 = − = Bài 9 : Chứng minh : o o o o16sin10 .sin 30 .sin50 .sin70 1= Ta có : o o A cos10 1A cos10 cos10 = = o (16sin10ocos10o)sin30o.sin50o.sin70o ⇔ ( )o oo1 1 oA 8sin 20 cos 40 .cos 202cos10 ⎛ ⎞= ⎜ ⎟⎝ ⎠ ⇔ ( )0 oo1 oA 4 sin 20 cos20 .cos40cos10= ⇔ ( )o oo1A 2sin 40 cos40cos10= ⇔ o o o o 1 cos10A sin 80 1 cos10 cos10 = = = Bài 10 : Cho ABCΔ . Chứng minh : A B B C C Atg tg tg tg tg tg 1 2 2 2 2 2 2 + + = Ta có : A B C 2 2 + π= − 2 Vậy : A B Ctg cot g 2 2 + = ⇔ A Btg tg 12 2 A B C1 tg .tg tg 2 2 2 + = − ⇔ A B C Atg tg tg 1 tg tg 2 2 2 2 ⎡ ⎤+ = −⎢ ⎥⎣ ⎦ B 2 MATHVN.COM www.MATHVN.com ⇔ A C B C A Btg tg tg tg tg tg 1 2 2 2 2 2 2 + + = Bài 11 : Chứng minh : ( )π π π π+ + + =8 4tg 2tg tg cot g * 8 16 32 32 Ta có : (*) ⇔ 8 cot g tg 2tg 4tg 32 32 16 8 π π π= − − − π Mà : 2 2cosa sina cos a sin acot ga tga sina cosa sina cosa −− = − = cos2a 2cot g2a1 sin2a 2 = = Do đó : (*) ⇔ cot g tg 2tg 4tg 8 32 32 16 8 π π π π⎡ ⎤− − −⎢ ⎥⎣ ⎦ = ⇔ 2cot g 2tg 4tg 8 16 16 8 π π π⎡ ⎤− −⎢ ⎥⎣ ⎦ = ⇔ 4cot g 4tg 8 8 8 π π− = ⇔ 8cot g 8 4 π = (hiển nhiên đúng) Bài :12 : Chứng minh : a/ 2 2 22 2cos x cos x cos x 3 3 π π⎛ ⎞ ⎛ ⎞ 3 2 + + + − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ b/ 1 1 1 1 cot gx cot g16x sin2x sin4x sin8x sin16x + + + = − a/ Ta có : 2 2 22 2cos x cos x cos x 3 3 π π⎛ ⎞ ⎛+ + + −⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎞⎟⎠ ( )1 1 4 1 41 cos2x 1 cos 2x 1 cos 2x 2 2 3 2 3 ⎡ π ⎤ ⎡ π ⎤⎛ ⎞ ⎛= + + + + + + −⎜ ⎟ ⎜ ⎞⎟⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎥⎠⎣ ⎦ ⎣ ⎦ 3 1 4 4cos2x cos 2x cos 2x 2 2 3 3 ⎡ π⎛ ⎞ ⎛= + + + + −⎜ ⎟ ⎜⎢ ⎥⎝ ⎠ ⎝⎣ ⎦ π ⎤⎞⎟⎠ 3 1 4cos2x 2cos2x cos 2 2 3 π⎡ ⎤= + +⎢ ⎥⎣ ⎦ 3 1 1cos2x 2cos2x 2 2 2 ⎡ ⎤⎛ ⎞= + + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ 3 2 = b/ Ta có : cosa cosb sin bcosa sina cosbcot ga cot gb sina sin b sinasin b −− = − = MATHVN.COM www.MATHVN.com ( )sin b a sina sin b −= Do đó : ( ) ( )sin 2x x 1cot gx cot g2x 1 sin xsin2x sin2x −− = = ( ) ( )sin 4x 2x 1cot g2x cot g4x 2 sin2xsin4x sin4x −− = = ( ) ( )sin 8x 4x 1cot g4x cot g8x 3 sin4xsin8x sin8x −− = = ( ) ( )sin 16x 8x 1cot g8x cot g16x 4 sin16xsin8x sin16x −− = = Lấy (1) + (2) + (3) + (4) ta được 1 1 1 1cot gx cot g16x sin2x sin4x sin8x sin16x − = + + + Bài 13 : Chứng minh : + =3 0 2 08sin 18 8sin 18 1 Ta có: sin180 = cos720 ⇔ sin180 = 2cos2360 - 1 ⇔ sin180 = 2(1 – 2sin2180)2 – 1 ⇔ sin180 = 2(1 – 4sin2180+4sin4180)-1 ⇔ 8sin4180 – 8sin2180 – sin180 + 1 = 0 (1 ) ⇔ (sin180 – 1)(8sin3180 + 8sin2180 – 1) = 0 ⇔ 8sin3180 + 8sin2180 – 1 = 0 (do 0 < sin180 < 1) Cách khác : Chia 2 vế của (1) cho ( sin180 – 1 ) ta có ( 1 ) ⇔ 8sin2180 ( sin180 + 1 ) – 1 = 0 Bài 14 : Chứng minh : a/ ( )4 4 1sin x cos x 3 cos4x 4 + = + b/ ( )1sin6x cos6x 5 3cos4x 8 + = + c/ ( )8 8 1sin x cos x 35 28cos4x cos8x 64 + = + + a/ Ta có ... ài 213: Cho ABCΔ có: sin 2A sin 2B 4sin A.sin B+ = Chứng minh ABCΔ vuông. Ta có: + =sin 2A sin 2B 4sin A.sin B [ ] [ ] ⇔ + − = − + − − ⇔ + = − + − 2sin(A B) cos(A B) 2 cos(A B) cos(A B) cos(A B) 1 sin(A B) cos(A B) [ ]⇔ − = − −cosC 1 sin C cos(A B) ⇔ − + = − −2cosC(1 sin C) (1 sin C).cos(A B) ⇔ − + = −2cosC(1 sin C) cos C.cos(A B) ⇔ = − + = −cosC 0hay (1 sinC) cosC.cos(A B) (*) ⇔ =cosC 0 ( Do nên sinC 0> (1 sinC) 1− + < − Mà co .Vậy (*) vô nghiệm.) sC.cos(A B) 1− ≥ − MATHVN.COM www.MATHVN.com Do đó ABCΔ vuông tại C III. TAM GIÁC CÂN Bài 214:Chứng minh nếu ABCΔ có CtgA tgB 2cotg 2 + = thì là tam giác cân. Ta có: CtgA tgB 2cotg 2 + = C2cossin(A B) 2 CcosA.cosB sin 2 C2cossinC 2 CcosA.cosB sin 2 C C C2sin cos 2cos 2 2 CcosA cosB sin 2 +⇔ = ⇔ = ⇔ = 2 ⇔ 2 C Csin cosA.cosB do cos 0 2 2 ⎛ ⎞= >⎜ ⎟⎝ ⎠ ( ) ( ) ( ( ) ( ) ⇔ − = + + −⎡ ⎤⎣ ⎦ ⇔ − = − + − ⇔ − = ⇔ = 1 11 cosC cos A B cos A B 2 2 1 cosC cosC cos A B cos A B 1 ) A B ABC⇔ Δ cân tại C. Bài 215: Chứng minh ABCΔ cân nếu: 3 3A B Bsin .cos sin .cos 2 2 2 2 = A Ta có: 3 3A B Bsin .cos sin .cos 2 2 2 2 = A 2 2 A Bsin sin1 12 2 A A B Bcos cos cos cos 2 2 2 2 ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⇔ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ (do Acos 2 > 0 và Bcos 2 >0 ) MATHVN.COM www.MATHVN.com 2 2 3 3 2 2 A A B Btg 1 tg tg 1 tg 2 2 2 2 A B A Btg tg tg tg 0 2 2 2 2 A B A B A Btg tg 1 tg tg tg .tg 0 (*) 2 2 2 2 2 2 ⎛ ⎞ ⎛ ⎞⇔ + = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⇔ − + − = ⎛ ⎞ ⎡ ⎤⇔ − + + + =⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⇔ =A Btg tg 2 2 ( vì 2 2A B A B1 tg tg tg tg 0 2 2 2 2 + + + > ) ⇔ =A B ABC⇔ Δ cân tại C Bài 216: Chứng minh ABCΔ cân nếu: ( )2 2 2 22 2cos A cos B 1 cotg A cotg B (*)sin A sin B 2+ = ++ Ta có: (*) 2 2 2 2 2 2 cos A cos B 1 1 1 2 sin A sin B 2 sin A sin B + ⎛ ⎞⇔ = +⎜ ⎟+ ⎝ ⎠− 2 2 2 2 2 2 cos A cos B 1 1 11 sin A sin B 2 sin A sin B + ⎛ ⎞⇔ + = +⎜ ⎟+ ⎝ ⎠ ⎛ ⎞⇔ = +⎜ ⎟+ ⎝ ⎠2 2 2 2 2 1 1 1 2sin A sin B sin A sin B ( )⇔ = + 22 2 2 24 sin A sin B sin A sin B ( )2 20 sin A sin B sin A sinB ⇔ = − ⇔ = Vậy ABCΔ cân tại C Bài 217: Chứng minh ABCΔ cân nếu: ( )Ca b tg atgA btgB (*) 2 + = + Ta có: ( )Ca b tg atgA btgB 2 + = + ( )⇔ + = +Ca b cotg atgA btgB 2 ⎡ ⎤ ⎡⇔ − + −⎢ ⎥ ⎢⎣ ⎦ ⎣ C Ca tgA cotg b tgB cotg 0 2 2 ⎤ =⎥⎦ + +⎡ ⎤ ⎡⇔ − + −⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎤ =⎥⎦ A B Aa tgA tg b tgB tg 0 2 2 B − − ⇔ ++ + = A B B Aa sin bsin 2 2 0A B A Bcos A.cos cosB.cos 2 2 MATHVN.COM www.MATHVN.com −⇔ = − =A B a bsin 0hay 0 2 cos A cosB ⇔ = =2R sin A 2Rsin BA Bhay cos A cosB ⇔ = = ⇔ ΔA B hay tgA tgB ABC cân tại C IV. NHẬN DẠNG TAM GIÁC Bài 218: Cho ABCΔ thỏa: a cosB bcosA asin A bsinB (*)− = − Chứng minh ABCΔ vuông hay cân Do định lý hàm sin: a 2Rsin A,b 2RsinB= = Nên (*) ( )2 22Rsin A cosB 2RsinBcos A 2R sin A sin B⇔ − = − ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2sin A cosB sinBcosA sin A sin B 1 1sin A B 1 cos2A 1 cos2B 2 2 1sin A B cos2B cos2A 2 sin A B sin A B sin B A sin A B 1 sin A B 0 sin A B 0 sin A B 1 A B A B 2 ⇔ − = − ⇔ − = − − − ⇔ − = − ⇔ − = − + −⎡ ⎤⎣ ⎦ ⇔ − − + =⎡ ⎤⎣ ⎦ ⇔ − = ∨ + = π⇔ = ∨ + = vậy ABCΔ vuông hay cân tại C Cách khác ( ) − = − ⇔ − = + − 2 2sin A cosB sin Bcos A sin A sin B sin A B (sin A sin B) ( sin A sin B) ( ) + − + −⇔ − = A B A B A B A Bsin A B (2sin cos ) (2 cos sin ) 2 2 2 2 ( ) ( ) ( ) ( ) ( ) ⇔ − = + − ⇔ − = ∨ + = π⇔ = ∨ + = sin A B sin A B sin A B sin A B 0 sin A B 1 A B A B 2 Bài 219 ABCΔ là tam giác gì nếu ( ) ( ) ( ) ( )2 2 2 2a b sin A B a b sin A B (*)+ − = − + Ta có: (*) ( ) ( ) ( ) ( )2 2 2 2 2 2 24R sin A 4R sin B sin A B 4R sin A sin B sin A B⇔ + − = − + ( ) ( ) ( ) ( )2 2sin A sin A B sin A B sin B sin A B sin A B 0⇔ − − + + − + +⎡ ⎤ ⎡⎣ ⎦ ⎣ =⎤⎦ = ( )2 22sin A cosA sin B 2sin Bsin A cosB 0⇔ − + MATHVN.COM www.MATHVN.com sin A cos A sin BcosB 0⇔ − + = (do sin và sin ) A 0> B 0> sin2A sin2B 2A 2B 2A 2B A B A B 2 ⇔ = ⇔ = ∨ = π − π⇔ = ∨ + = Vậy ABCΔ cân tại C hay ABCΔ vuông tại C. Bài 220: ABCΔ là tam giác gì nếu: 2 2a sin2B b sin2A 4abcosA sinB (1) sin2A sin2B 4sin A sinB (2) ⎧ + =⎨ + =⎩ Ta có: (1) 2 2 2 2 2 24R sin Asin2B 4R sin Bsin2A 16R sin Asin BcosA⇔ + = ( ) 2 2 2 2 2 sin A sin2B sin Bsin2A 4sin A sin BcosA 2sin A sinBcosB 2sin A cosA sin B 4sin A sin BcosA sin A cosB sinBcosA 2sinBcosA (dosin A 0,sinB 0) sin A cosB sinBcosA 0 sin A B 0 A B ⇔ + = ⇔ + = ⇔ + = > ⇔ − = ⇔ − = ⇔ = 2 > Thay vào (2) ta được 2sin2A 2sin A= ( ) 22sin A cosA 2sin A cosA sin A dosin A 0 tgA 1 A 4 ⇔ = ⇔ = > ⇔ = π⇔ = Do đó ABCΔ vuông cân tại C V. TAM GIÁC ĐỀU Bài 221: Chứng minh ABCΔ đều nếu: ( )bc 3 R 2 b c a (*)= + −⎡ ⎤⎣ ⎦ Ta có:(*) ( ) ( ) ( )2RsinB 2RsinC 3 R 2 2RsinB 2RsinC 2Rsin A⇔ = + −⎡ ⎤⎣ ⎦ ( ) ( )⇔ = + −2 3 sin BsinC 2 sin B sinC sin B C+ ( )⇔ = + − −2 3 sin Bsin C 2 sin B sin C sin B cosC sin C cosB ⎡ ⎤ ⎡⇔ − − + − −⎢ ⎥ ⎢⎣ ⎦ ⎣ 1 3 1 32sin B 1 cosC sinC 2sinC 1 cosB sin B 0 2 2 2 2 ⎤ =⎥⎦ ⎡ π ⎤ ⎡ π ⎤⎛ ⎞ ⎛ ⎞⇔ − − + − − =⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦sin B 1 cos C sinC 1 cos B 0 (1)3 3 MATHVN.COM www.MATHVN.com Do sin và B 0> 1 cos C 0 3 π⎛ ⎞− −⎜ ⎟⎝ ⎠ ≥ sin và C 0> 1 cos B 0 3 π⎛ ⎞− −⎜ ⎟⎝ ⎠ ≥ Nên vế trái của (1) luôn 0≥ Do đó, (1) cos C 1 3 cos B 1 3 ⎧ π⎛ ⎞− =⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π⎛ ⎞⎪ − =⎜ ⎟⎪ ⎝ ⎠⎩ C B 3 π⇔ = = ⇔ ABCΔ đều. Bài 222: Chứng minh ABCΔ đều nếu 3 3 3 2 3sinBsinC (1) 4 a b ca ( a b c ⎧ =⎪⎪⎨ − −⎪ =⎪ − −⎩ 2) Ta có: (2) 3 2 2 3 3a a b a c a b c⇔ − − = − − 3 ( )2 3a b c b c⇔ + = + 3 ( ) ( ) ( )2 2 2 2 2 a b c b c b bc c a b bc c ⇔ + = + − + ⇔ = − + 2 c (do đl hàm cosin) 2 2 2 2b c 2bc cosA b c b⇔ + − = + − ⇔ = π⇔ = ⇔ = 2bc cos A bc 1cos A A 2 3 Ta có: (1) 4sin BsinC 3⇔ = ( ) ( )⇔ − − +⎡ ⎤⎣ ⎦2 cos B C cos B C 3= = ( )⇔ − +⎡ ⎤⎣ ⎦2 cos B C cos A 3 ( ) π⎛ ⎞ ⎛ ⎞⇔ − + = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ 12 cos B C 2 3 do (1) ta có A 2 3 ( )⇔ − = ⇔ =cos B C 1 B C Vậy từ (1), (2) ta có ABCΔ đều Bài 223: Chứng minh ABCΔ đều nếu: sin A sin B sinC sin 2A sin 2B sin 2C+ + = + + Ta có: ( ) ( )sin2A sin2B 2sin A B cos A B+ = + − ( )2sinCcos A B 2sinC (1)= − ≤ Dấu “=” xảy ra khi: ( )cos A B 1− = Tương tự: sin 2A sin 2C 2sin B+ ≤ (2) MATHVN.COM www.MATHVN.com Dấu “=” xảy ra khi: ( )cos A C 1− = Tương tự: sin 2B sin 2C 2sin A+ ≤ (3) Dấu “=” xảy ra khi: ( )cos B C 1− = Từ (1) (2) (3) ta có: ( ) ( )2 sin2A sin2B sin2C 2 sinC sinB sinA+ + ≤ + + Dấu “=” xảy ra ( ) ( ) ( ) − =⎧⎪⇔ − =⎨⎪ − =⎩ cos A B 1 cos A C 1 cos B C 1 ⇔ A = =B C ⇔ ABCΔ đều Bài 224: Cho ABCΔ có: 2 2 2 1 1 1 1 (*) sin 2A sin 2B sin C 2cosA cosBcosC + + = Chứng minh ABCΔ đều Ta có: (*) ⇔ + +2 2 2 2 2 2sin 2B.sin 2C sin 2Asin 2C sin 2Asin 2B ( ) ( ) sin2A.sin2B.sin2C sin2A sin2Bsin2C 2cosA cosBcosC 4sin A sinBsinC sin2A sin2Bsin2C = ⋅ = Mà: ( ) ( ) (= − − +⎡ ⎤⎣ ⎦4 sin A sin Bsin C 2 cos A B cos A B sin A B)+ )+ ( ) ( ) ( = − +⎡ ⎤⎣ ⎦ = + − = + + 2 cos A B cosC sin C 2sin C cosC 2cos A B sin A B sin 2C sin 2A sin 2B Do đó,với điều kiện ABCΔ không vuông ta có (*) 2 2 2 2 2 2sin 2Bsin 2C sin 2Asin 2C sin 2Asin 2B⇔ + + ( ) ( ) ( ) = + + = + + ⇔ − + − 2 2 2 2 2 sin 2A.sin 2B.sin 2C sin 2A sin 2B sin 2C sin 2A sin 2Bsin 2C sin 2Bsin 2A sin 2C sin 2Csin 2A sin 2B 1 1sin 2Bsin 2A sin 2Bsin 2C sin 2A sin 2B sin 2A sin 2C 2 2 ( )21 sin2Csin2A sin2Csin2B 0 2 + − = sin 2Bsin2A sin2Bsin2C sin2A sin2B sin2A sin2C sin2A sin2C sin2Csin2B =⎧⎪⇔ =⎨⎪ =⎩ =⎧⇔ ⎨ =⎩ sin 2A sin 2B sin 2B sin 2C A B C⇔ = = ABC⇔ đều Bài 225: Chứng minh ABCΔ đều nếu: a cosA bcosB ccosC 2p (*) a sinB bsinC csin A 9R + + =+ + MATHVN.COM www.MATHVN.com Ta có: a cos A bcosB c cosC+ + ( ) ( ) ( ) ( ) ( ) 2Rsin A cosA 2RsinBcosB 2RsinCcosC R sin2A sin2B sin2C R 2sin A B cos A B 2sinCcosC 2RsinC cos A B cos A B 4RsinCsin A sinB = + + = + + ⎡ ⎤= + − +⎣ ⎦ ⎡ ⎤= − − + =⎣ ⎦ Cách 1: a sin B bsinC csin A+ + ( ) ( )2 2 23 2R sin A sinB sinBsinC sinCsin A 2R sin A sin Bsin C do bđtCauchy = + + ≥ Do đó vế trái : 3a cosA bcosB ccosC 2 sin AsinBsinC asinB bsinC csin A 3 + + ≤+ + (1) Mà vế phải: ( )+ += = + +2p a b c 2 sin A sin B sinC 9R 9R 9 32 sin A sinBsinC 3 ≥ (2) Từ (1) và (2) ta có ( * ) đều sin A sin B sinC ABC⇔ = = ⇔ Δ Cách 2: Ta có: (*) 4Rsin AsinBsinC a b c a sinB bsinC csin A 9R + +⇔ =+ + a b c4R a b c2R 2R 2R b c ca 9Ra b 2R 2R 2R ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⇔ =⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ( ) ( )9abc a b c ab bc ca⇔ = + + + + Do bất đẳng thức Cauchy ta có 3 2 2 23 a b c abc ab bc ca a b c + + ≥ + + ≥ Do đó: ( ) ( )a b c ab bc ca 9abc+ + + + ≥ Dấu = xảy ra a b c⇔ = = ABC⇔ Δ đều. Bài 226: Chứng minh ABCΔ đều nếu A ( )B Ccot gA cot gB cot gC tg tg tg * 2 2 2 + + = + + Ta có: ( )sin A B sinCcot gA cot gB sin A sinB sin A sinB ++ = = 2 sinC sin A sinB 2 ≥ +⎛ ⎞⎜ ⎟⎝ ⎠ (do bđt Cauchy) MATHVN.COM www.MATHVN.com 2 2 2 C C C2sin cos 2sin 2 2 2 A B A B C Asin .cos cos cos 2 2 2 = = B 2 + − − C2tg 2 ≥ (1) Tương tự: Bcot gA cot gC 2tg 2 + ≥ (2) Acot gB cot gC 2tg 2 + ≥ (3) Từ (1) (2) (3) ta có ( ) A B C2 cot gA cot gB cot gC 2 tg tg tg 2 2 2 ⎛ ⎞+ + ≥ + +⎜ ⎟⎝ ⎠ Do đó dấu “=” tại (*) xảy ra − − −⎧ = =⎪⇔ ⎨⎪ = =⎩ =A B A C B Ccos cos cos 1 2 2 2 sin A sin B sin C A B C ABC đều. ⇔ = = ⇔ Δ BÀI TẬP 1. Tính các góc của ABCΔ biết: a/ = + − 3cos A sin B sinC 2 (ĐS: 2B C ,A 6 3 π π= = = ) b/ sin 6 (ĐS: A sin 6B sin 6C 0+ + = A B C 3 π= = = ) c/ sin5 A sin5B sin5C 0+ + = 2. Tính góc C của ABCΔ biết: a/ ( ) ( )1 cot gA 1 cot gB 2+ + = b/ 2 2 9 A,Bnhọn sin A sin B sinC ⎧⎪⎨ + =⎪⎩ 3. Cho ABCΔ có: ⎧ + + <⎨ + + =⎩ 2 2 2cos A cos B cos C 1 sin 5A sin 5B sin 5C 0 Chứng minh Δ có ít nhất một góc 36 0. 4. Biết . Chứng minh 2 2 2sin A sin B sin C m+ + = a/ m thì 2= ABCΔ vuông b/ m thì 2> ABCΔ nhọn c/ m thì 2< ABCΔ tù. 5. Chứng minh ABCΔ vuông nếu: a/ b ccosB cosC a ++ = b/ b c a cosB cosC sinBsinC + = MATHVN.COM www.MATHVN.com c/ sin A sin B sinC 1 cos A cosB cosC+ + = − + + d/ ( ) ( )2 2 2 1 cos B Cb c b 1 cos2B ⎡ ⎤− −− ⎣ ⎦= − 6. Chứng minh ABCΔ cân nếu: a/ 2 2 1 cosB 2a c sinB a c + += − b/ + + =+ − sin A sin B sinC A Bcot g .cot g sin A sin B sinC 2 2 c/ 2tgA 2tgB tgA.tg B+ = d/ C Ca cot g tgA b tgB cot g 2 2 ⎛ ⎞ ⎛− = −⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎞⎟⎠ e/ ( ) C Bp b cot g ptg 2 2 − = f/ ( )Ca b tg atgA btgB 2 + = + 7. ABCΔ là Δ gì nếu: a/ ( ) A BatgB btgA a b tg 2 ++ = + b/ c c cos2B bsin 2B= + c/ + +sin 3A sin 3B sin 3C 0= d/ ( ) ( )4S a b c a c b= + − + − 8. Chứng minh ABCΔ đều nếu a/ ( )2 a cos A bcosB c cosC a b c+ + = + + b/ ( )= + +2 3 3 33S 2R sin A sin B sin C c/ sin A sin B sinC 4sin A sin BsinC+ + = d/ a b c 9Rm m m 2 + + = với là 3 đường trung tuyến a bm ,m ,mc MATHVN.COM www.MATHVN.com
Tài liệu đính kèm: