Câu I ( 3,0 điểm )
Cho hàm số y = x - 3 / x - 2 có đồ thị (C)
a) Khảo sát sự biến thiên và vẽ đồ thị (C).
b) Tìm tất cả các giá trị của tham số m để đường thẳng (d) : y = mx + 1 cắt đồ thị của hàm số đã cho tại hai điểm phân biệt .
BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP THPT NĂM 2010 ĐỀ THAM KHẢO Môn: TOÁN – Giáo dục THPT Thời gian làm bài 150 phút – Không kể thời gian giao đề. SỐ 5 I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I ( 3,0 điểm ) Cho hàm số có đồ thị (C) a) Khảo sát sự biến thiên và vẽ đồ thị (C). b) Tìm tất cả các giá trị của tham số m để đường thẳng (d) : y = mx + 1 cắt đồ thị của hàm số đã cho tại hai điểm phân biệt . Câu II ( 3,0 điểm ) a) Giải bất phương trình b) Tính tích phân : I = c) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn . Câu III ( 1,0 điểm ) Cho hình lăng trụ tam giác đều ABC.A’B’C’ có tất cà các cạnh đều bằng a .Tính thể tích của hình lăng trụ và diện tích của mặt cầu ngoại tiếp hình lăng trụ theo a . II . PHẦN RIÊNG ( 3 điểm ) Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó . 1) Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A; B; C; D biết a) Tìm tọa độ 4 điểm A; B; C; D. Viết phương trình mặt phẳng (BCD). b) Tìm tọa độ điểm A’ đối xứng với A qua mặt phẳng (BCD) Câu V.a ( 1,0 điểm ) : Tìm môđun của số phức . 2) Theo chương trình nâng cao : Câu IV.b ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng (): và hai đường thẳng ( ) : , ( ) : . a. Chứng tỏ đường thẳng () song song mặt phẳng () và () cắt mặt phẳng () . b. Tính khoảng cách giữa đường thẳng () và ( ). c. Viết phương trình đường thẳng () song song với mặt phẳng () , cắt đường thẳng () và () lần lượt tại M và N sao cho MN = 3 . Câu V.b ( 1,0 điểm ) : Tìm nghiệm của phương trình , trong đó là số phức liên hợp của số phức z . . . . . . . . .Hết . . . . . . . ĐÁP ÁN I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I ( 3,0 điểm ) a) 2đ x 2 + + y 1 1 b) 1đ Phương trình hoành độ của (C ) và đường thẳng : (1) Để (C ) và (d) cắt nhau tại hai điểm phân biệt phương trình (1) có hai nghiệm phân biệt khác 2 Câu II ( 3,0 điểm ) a) 1đ pt Điều kiện : x > 0 (1) So điều kiện , bất phương trình có nghiệm : b) 1đ I = c) 1đ Ta có : + + Câu III ( 1,0 điểm ) ¡ ¡ Gọi O , O’ lần lượt là tâm của đường tròn ngoại tiếp thí tâm của mặt cầu (S) ngoại tiếp hình lăng trụ đều ABC.A’B’C’ là trung điểm I của OO’ . Bán kính Diện tích : II . PHẦN RIÊNG ( 3 điểm ) Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó . 1. Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) : a) 1,25đ 0,5 Tọa độ 4 điểm A; B; C; D là : 0,5 Suy ra 1 VTCP của mp(BCD) là 0,25 Phương trình mp(BCD): b) 0,75 0,25 ptđt đi qua A và 0,5 . I là trung điểm AA’ Câu V.a ( 1,0 điểm ) : Vì . Suy ra : Theo chương trình nâng cao : Câu IV.b ( 2,0 điểm ) : a) 0,75đ có vtpt Do và nên () // () . Do nên () cắt () . b) 0,5 đ Vì c) 0,75đ phương trình Gọi ; Theo đề : . Vậy Câu V.b ( 1,0 điểm ) : Gọi z = a + bi , trong đó a,b là các số thực . ta có : và Khi đó : Tìm các số thực a,b sao cho : Giải hệ trên ta được các nghiệm (0;0) , (1;0) , , . --- Hết---
Tài liệu đính kèm: