Kỳ thi tốt nghiệp THPT năm 2010 Môn: Toán - Đề số 5

Kỳ thi tốt nghiệp THPT năm 2010 Môn: Toán - Đề số 5

Câu I ( 3,0 điểm )

 Cho hàm số y = x - 3 / x - 2 có đồ thị (C)

a) Khảo sát sự biến thiên và vẽ đồ thị (C).

b) Tìm tất cả các giá trị của tham số m để đường thẳng (d) : y = mx + 1 cắt đồ thị của hàm số đã cho tại hai điểm phân biệt .

 

doc 4 trang Người đăng haha99 Lượt xem 1337Lượt tải 0 Download
Bạn đang xem tài liệu "Kỳ thi tốt nghiệp THPT năm 2010 Môn: Toán - Đề số 5", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP THPT NĂM 2010
 ĐỀ THAM KHẢO Môn: TOÁN – Giáo dục THPT
 Thời gian làm bài 150 phút – Không kể thời gian giao đề.
 SỐ 5
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
 Câu I ( 3,0 điểm ) 
 Cho hàm số có đồ thị (C)
a) Khảo sát sự biến thiên và vẽ đồ thị (C).
b) Tìm tất cả các giá trị của tham số m để đường thẳng (d) : y = mx + 1 cắt đồ thị của hàm số đã cho tại hai điểm phân biệt .
 Câu II ( 3,0 điểm ) 
a) Giải bất phương trình 
b) Tính tích phân : I = 
c) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn .
Câu III ( 1,0 điểm ) 
 Cho hình lăng trụ tam giác đều ABC.A’B’C’ có tất cà các cạnh đều bằng a .Tính thể tích của hình lăng trụ và diện tích của mặt cầu ngoại tiếp hình lăng trụ theo a .
II . PHẦN RIÊNG ( 3 điểm ) 
 Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó . 
1) Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A; B; C; D biết
a) Tìm tọa độ 4 điểm A; B; C; D. Viết phương trình mặt phẳng (BCD).
b) Tìm tọa độ điểm A’ đối xứng với A qua mặt phẳng (BCD)
Câu V.a ( 1,0 điểm ) : 
 Tìm môđun của số phức .
2) Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng (): và hai đường thẳng 
( ) : , ( ) : .
 a. Chứng tỏ đường thẳng () song song mặt phẳng () và () cắt mặt phẳng () .
 b. Tính khoảng cách giữa đường thẳng () và ( ).
 c. Viết phương trình đường thẳng () song song với mặt phẳng () , cắt đường thẳng 
 () và () lần lượt tại M và N sao cho MN = 3 .
Câu V.b ( 1,0 điểm ) : 
 Tìm nghiệm của phương trình , trong đó là số phức liên hợp của số phức z . 
 . . . . . . . .Hết . . . . . . .
ĐÁP ÁN
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) 
Câu I ( 3,0 điểm ) 
 a) 2đ
x
 2 
 +
 +
y
1 
 1
 b) 1đ Phương trình hoành độ của (C ) và đường thẳng :
 (1) 
 Để (C ) và (d) cắt nhau tại hai điểm phân biệt phương trình (1) có hai nghiệm phân 
 biệt khác 2 
Câu II ( 3,0 điểm ) 
 a) 1đ pt 
 Điều kiện : x > 0 
 (1) 
 So điều kiện , bất phương trình có nghiệm : 
 b) 1đ I = 
 c) 1đ Ta có : 
 + + 
Câu III ( 1,0 điểm ) 
¡ 
 ¡ Gọi O , O’ lần lượt là tâm của đường tròn ngoại tiếp 
 thí tâm của mặt cầu (S) ngoại 
 tiếp hình lăng trụ đều ABC.A’B’C’ là trung điểm 
 I của OO’ .
 Bán kính 
 Diện tích : 
II . PHẦN RIÊNG ( 3 điểm ) 
 Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó . 
 1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) : 
 a) 1,25đ 
0,5	Tọa độ 4 điểm A; B; C; D là :	
0,5 	Suy ra 1 VTCP của mp(BCD) là 
0,25	Phương trình mp(BCD): 
 b) 0,75	
0,25	ptđt đi qua A và 
0,5	. I là trung điểm AA’ 
Câu V.a ( 1,0 điểm ) : 
 Vì .
 Suy ra : 
Theo chương trình nâng cao :
Câu IV.b ( 2,0 điểm ) : 
 a) 0,75đ 
 có vtpt 
 Do và nên () // () .
 Do nên () cắt () .
 b) 0,5 đ Vì 
 c) 0,75đ phương trình 
 Gọi ; 
 Theo đề : . 
 Vậy 
 Câu V.b ( 1,0 điểm ) : 
 Gọi z = a + bi , trong đó a,b là các số thực . ta có : và 
 Khi đó : Tìm các số thực a,b sao cho : 
 Giải hệ trên ta được các nghiệm (0;0) , (1;0) , , .
--- Hết---

Tài liệu đính kèm:

  • docLuyen thi Tot nghiep Toan 2010 so 5.doc