Câu I ( 3,0 điểm )
Cho hàm số y=x - 3/ x - 2
có đồ thị (C)
a) Khảo sát sự biến thiên và vẽ đồ thị (C).
b) Tìm tất cả các giá trị của tham số m để đường thẳng (d) : y = mx + 1 cắt đồ thị của hàm số đã cho tại hai điểm phân biệt .
BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP THPT NĂM 2010 ĐỀ THAM KHẢO Môn: TOÁN – Giáo dục THPT Thời gian làm bài 150 phút – Không kể thời gian giao đề. SỐ 5 I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I ( 3,0 điểm ) Cho hàm số x 3y x 2 có đồ thị (C) a) Khảo sát sự biến thiên và vẽ đồ thị (C). b) Tìm tất cả các giá trị của tham số m để đường thẳng (d) : y = mx + 1 cắt đồ thị của hàm số đã cho tại hai điểm phân biệt . Câu II ( 3,0 điểm ) a) Giải bất phương trình ln (1 sin ) 2 2 2e log (x 3x) 0 b) Tính tích phân : I = 2 x x(1 sin )cos dx 2 2 0 c) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số x x ey e e trên đoạn [ ln 2 ; ln 4] . Câu III ( 1,0 điểm ) Cho hình lăng trụ tam giác đều ABC.A’B’C’ có tất cà các cạnh đều bằng a .Tính thể tích của hình lăng trụ và diện tích của mặt cầu ngoại tiếp hình lăng trụ theo a . II . PHẦN RIÊNG ( 3 điểm ) Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó . 1) Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A; B; C; D biết OA 5i j 3k; AB 10i 4k; BC 6i 4 j k; CD 2i 3 j 2k a) Tìm tọa độ 4 điểm A; B; C; D. Viết phương trình mặt phẳng (BCD). b) Tìm tọa độ điểm A’ đối xứng với A qua mặt phẳng (BCD) Câu V.a ( 1,0 điểm ) : Tìm môđun của số phức 3z 1 4i (1 i) . 2) Theo chương trình nâng cao : Câu IV.b ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng ( ): 2x y 2z 3 0 và hai đường thẳng ( d1 ) : x 4 y 1 z 2 2 1 , ( d2 ) : x 3 y 5 z 7 2 3 2 . a. Chứng tỏ đường thẳng ( d1) song song mặt phẳng ( ) và ( d2 ) cắt mặt phẳng ( ) . b. Tính khoảng cách giữa đường thẳng ( d1) và ( d2 ). c. Viết phương trình đường thẳng ( ) song song với mặt phẳng ( ) , cắt đường thẳng (d1) và ( d2 ) lần lượt tại M và N sao cho MN = 3 . Câu V.b ( 1,0 điểm ) : Tìm nghiệm của phương trình 2z z , trong đó z là số phức liên hợp của số phức z . . . . . . . . .Hết . . . . . . . ĐÁP ÁN I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm ) Câu I ( 3,0 điểm ) a) 2đ b) 1đ Phương trình hoành độ của (C ) và đường thẳng y mx 1 : x 3 2mx 1 g(x) mx 2mx 1 0 , x 2 x 2 (1) Để (C ) và (d) cắt nhau tại hai điểm phân biệt phương trình (1) có hai nghiệm phân biệt khác 2 m 0 m 0 m 02m m 0 m 0 m 1 m 1g(2) 0 1 0 Câu II ( 3,0 điểm ) a) 1đ pt ln 2 2 2 2 2e log (x 3x) 0 2 log (x 3x) 0 (1) Điều kiện : x > 0 x 3 (1) 2 2 2 2 2log (x 3x) 2 x 3x 2 x 3x 4 0 4 x 1 So điều kiện , bất phương trình có nghiệm : 4 x 3 ; 0 < x 1 b) 1đ I = 2 2x x x x 1 x 1 2(cos sin .cos )dx (cos sin x)dx (2sin cosx) 2 2 2 2 2 2 2 00 0 2 1 12. 2 2 2 2 c) 1đ Ta có : x 1ey 0 , x [ln 2 ; ln 4]x 2(e e) + 2min y y(ln 2) 2 e[ ln 2 ; ln 4 ] + 4Maxy y(ln 4) 4 e[ ln 2 ; ln 4 ] Câu III ( 1,0 điểm ) 2 3a 3 a 3V AA '.S a.lt ABC 4 4 Gọi O , O’ lần lượt là tâm của đường tròn ngoại tiếp ABC , A'B'C' thí tâm của mặt cầu (S) ngoại tiếp hình lăng trụ đều ABC.A’B’C’ là trung điểm I của OO’ . Bán kính a 3 a a 212 2 2 2R IA AO OI ( ) ( ) 3 2 6 x 2 y + + y 1 1 Diện tích : 2a 21 7 a2 2S 4 R 4 ( )mc 6 3 II . PHẦN RIÊNG ( 3 điểm ) Thí sinh học chương trình nào thì làm chỉ được làm phần dành riêng cho chương trình đó . 1. Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) : a) 1,25đ 0,5 Tọa độ 4 điểm A; B; C; D là : A 5;1;3 ; B 5;1; 1 ; C 1; 3;0 ; D 3; 6;2 0,5 BC;BD 5; 10; 10 5 1;2;2 Suy ra 1 VTCP của mp(BCD) là n 1;2;2 0,25 Phương trình mp(BCD): x 2y 2z 5 0 b) 0,75 0,25 ptđt đi qua A và x=5+t (BCD) là: y=1+2t (t R) z 3 2t 0,5 I (BCD) I 3; 3; 1 . I là trung điểm AA’ A ' 1; 7; 5 Câu V.a ( 1,0 điểm ) : Vì 3 3 2 3(1 i) 1 3i 3i i 1 3i 3 i 2 2i . Suy ra : 2 2z 1 2i z ( 1) 2 5 2. Theo chương trình nâng cao : Câu IV.b ( 2,0 điểm ) : a) 0,75đ qua A(4;1;0) qua B( 3; 5;7)(d ) : , (d ) : , 1 2 VTCP u (2;2; 1) VTCP u (2;3; 2)1 2 ( ) có vtpt n (2; 1;2) Do u .n 01 và A ( ) nên ( d1) // ( ) . Do u .n 3 02 nên ( d1) cắt ( ) . b) 0,5 đ Vì [u ,u ] ( 1;2;2) , AB ( 7; 6;7)1 2 [u ,u ].AB1 2 d((d ),(d )) 31 2 [u ,u ]1 2 c) 0,75đ phương trình qua (d )1mp( ) : ( ) : 2x y 2z 7 0 // ( ) Gọi N (d ) ( ) N(1;1;3)2 ; M (d ) M(2t 4;2t 1; t),NM (2t 3;2t; t 3)1 Theo đề : 2MN 9 t 1 . Vậy qua N(1;1;3) x 1 y 1 z 3( ) : ( ) : VTCP NM (1; 2; 2) 1 2 2 Câu V.b ( 1,0 điểm ) : Gọi z = a + bi , trong đó a,b là các số thực . ta có : z a bi và 2 2 2z (a b ) 2abi Khi đó : 2z z Tìm các số thực a,b sao cho : 2 2a b a 2ab b Giải hệ trên ta được các nghiệm (0;0) , (1;0) , 1 3( ; ) 2 2 , 1 3( ; ) 2 2 . --- Hết---
Tài liệu đính kèm: