Kiểm tra khảo sát chất lượng đầu năm môn toán − Lớp 12 năm học 2010 - 2011

Kiểm tra khảo sát chất lượng đầu năm môn toán − Lớp 12 năm học 2010 - 2011

Bài 2:(1.0đ) Cho hàm số f(x) = x4 – 3x3 + 3x2 – 4x + 5 (1)

a) Tính f ’(–2) và chứng minh phương trình f ’(x) = 0 có nghiệm.

b) Viết phương trình tiếp tuyến của đồ thị hàm số (1) tại điểm có hoành độ bằng 1.

Bài 3: (2.5đ) Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, SA (ABCD) và SA = .

 a) Chứng minh các mặt bên hình chóp S.ABCD là những tam giác vuông.

b) Tính khoảng cách từ A đến mặt phẳng (SBC).

c) Tính khoảng cách giữa hai đường thẳng AB và SD.

d) Cho (α) là mặt phẳng qua trung điểm đoạn AB và (α) song song với (SAD). Xác định và tính diện tích của thiết diện khi cắt hình chóp bởi mp(α).

 

doc 1 trang Người đăng haha99 Lượt xem 710Lượt tải 0 Download
Bạn đang xem tài liệu "Kiểm tra khảo sát chất lượng đầu năm môn toán − Lớp 12 năm học 2010 - 2011", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
	 ĐỀ ÔN TẬP SỐ 2
KIỂM TRA KHẢO SÁT CHẤT LƯỢNG ĐẦU NĂM
Môn Toán − Lớp 12 năm học 2010-2011 
( Thời gian làm bài: 120 phút )
I. PHẦN CHUNG: (6.0đ)
Bài 1:(2.5đ) a) Tính các giới hạn sau: A = ; B = 
b) Tìm a để hàm số f(x) liên tục tại điểm x = 1 biết .
Bài 2:(1.0đ) Cho hàm số f(x) = x4 – 3x3 + 3x2 – 4x + 5 (1) 
a) Tính f ’(–2) và chứng minh phương trình f ’(x) = 0 có nghiệm.
b) Viết phương trình tiếp tuyến của đồ thị hàm số (1) tại điểm có hoành độ bằng 1.
Bài 3: (2.5đ) Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, SA(ABCD) và SA = .
	a) Chứng minh các mặt bên hình chóp S.ABCD là những tam giác vuông.
b) Tính khoảng cách từ A đến mặt phẳng (SBC).
c) Tính khoảng cách giữa hai đường thẳng AB và SD.
d) Cho (a) là mặt phẳng qua trung điểm đoạn AB và (a) song song với (SAD). Xác định và tính diện tích của thiết diện khi cắt hình chóp bởi mp(a).
II. PHẦN RIÊNG:(4.0đ) Học sinh chỉ được chọn một trong hai phần sau:
Theo chương trình chuẩn:
Bài 4a:(2.0đ) 
1.Tìm các khoảng đơn điệu và cực trị của hàm số: y = f(x) = 3x2 – 2x3 
2. Tìm các tiệm cận của đồ thị hàm số : y = 
Bài 5a:(2.0đ) 
1.Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = x2.ex trên [-3;2] 
2. Chứng minh điểm I( –1; 0) là tâm đối xứng của đồ thị hàm số y = – x3 – 3x2 + 2
Theo chương trình nâng cao:
Bài 4b:(2.0đ) 
Cho hàm số , (m là tham số)
 	1. Tìm các tiệm cận đồ thị (C1) của hàm số khi m = 1.
2. Tìm m để hàm số có cực đại và cực tiểu.
Bài 5b:(2.0đ) 
1. Chứng minh đường cong (C) có phương trình có tâm đối xứng I và tìm tâm đối xứng đó.
2. Cho hàm số y = x3 - mx2 - m (Cm). Tìm m để (Cm) cắt Ox tại 3 điểm A,B,C sao cho AB=BC.
----------------------------------------------

Tài liệu đính kèm:

  • docDE KIEM TRA CHAT LUONG TOAN 12.doc