Kì thi chọn học sinh giỏi quốc gia lớp 12 thpt năm 2008 – Môn Toán

Kì thi chọn học sinh giỏi quốc gia lớp 12 thpt năm 2008 – Môn Toán

Câu 1:Hãy xác định số nghiệm của hệ phương trình (ẩn x;y ) sau:

d2 + y3 = 29

log3x.log2y = 1

Câu 2:Cho tam giác ABC có góc BEC là góc nhọn,trong đó E là trung điểm của AB.Trên tia EC lấy điểm M sao cho góc BME = ECA .Kí hiệu α là số đo của góc BEC ,hãy tính tỉ số MC/AB theo α

 

doc 11 trang Người đăng haha99 Lượt xem 1116Lượt tải 0 Download
Bạn đang xem tài liệu "Kì thi chọn học sinh giỏi quốc gia lớp 12 thpt năm 2008 – Môn Toán", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
KÌ THI CHỌN HỌC SINH GIỎI QUỐC GIA
LỚP 12 THPT NĂM 2008 – Môn TOÁN
Câu 1:Hãy xác định số nghiệm của hệ phương trình (ẩn ) sau:
Câu 2:Cho tam giác ABC có góc là góc nhọn,trong đó E là trung điểm của AB.Trên tia EC lấy điểm M sao cho .Kí hiệu là số đo của góc ,hãy tính tỉ số theo 
Câu 3:Đặt .Hỏi có tất cả bao nhiêu số tự nhiên n mà và chia hết cho m?
Câu 4:Cho dãy số thực được xác định như sau:
và với mọi 
Chứng minh rằng dãy có giới hạn hữu hạn khi .Hãy tìm giới hạn đó
Câu 5:Hỏi có tất cả bao nhiêu số tự nhiên chia hết cho 9 mà mỗi số gồm tối đa 2008 chữ số và trong đó có ít nhất 2 chữ số 9?
Câu 6:Cho x,y,z là các số thực không âm ,đôi một khác nhau.Chứng minh rằng
Hỏi dấu bằng xảy ra khi nào?
Câu 7:Cho tam giác ABC,trung tuyến AD.Cho đường thẳng d vuông góc với đường thẳng AD.Xét điểm M nằm trên d.Gọi E,F lần lượt là trung điểm của MB,MC.Đường thẳng đi qua E và vuông góc với d cắt đường thẳng AB ở P,đường thẳng đi qua F và vuông góc với d cắt đường thẳng AC ở Q.CMR đường thẳng đi qua M vuông góc với đường thẳng PQ luôn đi qua 1 điểm cố định ,khi điểm M di động trên đường thẳng d.
Lời giải của một số học sinh 11 chuyên toán trường Quốc Học Huế.
Bạn có thể trao đổi qua forum ở trang web:
Theo phân công lao động thì mình sẽ post giải bài 4,5,6 trình (pi3.14) giải bài 1,2 và bạn Nhật sẽ giải bài 3,7. Phần việc của mình
Bài 4 
Bằng qui nạp ta có Với mọi n.
Xét với 
Ta có 
Mà do đó tăng , tương tự ta có giảm
Xét dãy bằng qui nạp ta có bị chặn trên bới 2, theo trên nó là dãy tăng nên có giới hạn. 
Đặt 
Khi đó từ đó có 
Tương tự dãy giảm, bị chặn dưới bởi 0 nên có giới hạn. Ta cũng có giới hạn là 1. 
Vậy 
Bài 5
Gọi các số phải tìm có dạng 
Do số này chia hết cho 9 nên tổng các chữ số chia hết cho 9. 
Bước 1 Tìm tất cả các số chia hết cho 9
Có 10 cách chọn các chữ số , 10 cách chọn chữ số , ... , 10 cách chọn chữ số ứng với các 
cách chọn này có 9 cách chọn chữ số để thoả mãn bài toán. Vậy có số chia hết cho 9
Bước 2 Tìm số các số chia hết cho 9 không có chữ số 9 trong nó
Có 8 cách chọn các chữ số có 9 cách chọn do đó có tất cả số
Bước 3 Tìm số các số chia hết cho 9 mà trong nó chỉ có duy nhất một chữ số 9
Có số có n-1 chữ số thoả bài toán, ta đưa chữ số 9 vào số trên thì được 1 số thoả bài toán. Có (n-1) vị trí có thể đưa chữ số 9 vào
Như vậy có số
Cuối cùng số các số phải tìm là 
Tính tổng ni thì dễ dùng cấp số nhân với đạo hàm là ok
Ăn cơm cái đã, tí nữa post tiếp 
Bài 6
Giả sử 
Ta có 
Và 
Từ đây ta suy ra:
Vậy ta sẽ chứng minh rằng:
Cái ni thì hiển nhiên đúng theo Cauchy
Từ đó suy ra đpcm.
Dấu bằng xảy ra khi chỉ khi:
Bài 6 
Cách ni của một anh bên TPHCM ý tưởng cũng tương tự, post lên xem thử
Cho là các số không âm khác nhau đôi một , tìm hằng số k tốt nhất của bất đẳng thức
Đặt : 
Ta chung minh : 
That vay , khong mat tinh tong quat gia su ta co :
Vay ta chi can chung minh bat dang thuc trong truong hop Dat va khac !
Ta co :
Cách 1 : biến đổi tưong đương chứng minh tươnng đương với Hiển nhiên đúng !
Cách 2 : 
Tu do ta tim duoc gia tri nho nhat cua la va dat duoc tai 2 diem la va vay hang so tot nhat can tim la va dau bang xay ra tai hai diem la va 
Bài 2
Lấy điểm sao cho là hình bình hành
Ta có thẳng hàng.
Do đó: tam giác cân tại Suy ra 
Trên tia lấy điểm sao cho 
Xét hai tam giác và có
Do đó
Suy ra 
Suy ra tam giác cân tại 
Lấy là trung điểm thì 
Vậy 
Bài 2 ngắn gọn, đơn giản, mình giải trước:
Từ C kẻ CF song song với BM (F thuộc cạnh BC, cái này dễ thấy, chắc các bạn không thắc mắc).
Khi đó CE là phân giác của góc ACB.
Áp dụng định lí Talet và tính chất phân giác, ta có 
.
mặt khác theo công thức tính diện tích 
suy ra 
Từ đó suy ra 
Tương tự .
suy ra .
Theo phân công lao động thì mình sẽ post giải bài 4,5,6 trình (pi3.14) giải bài 1,2 và bạn Nhật sẽ giải bài 3,7. Phần việc của mình
Bài 4 
Bằng qui nạp ta có Với mọi n.
Xét với 
Ta có 
Mà do đó tăng , tương tự ta có giảm
Xét dãy bằng qui nạp ta có bị chặn trên bới 2, theo trên nó là dãy tăng nên có giới hạn. 
Đặt 
Khi đó từ đó có 
Tương tự dãy giảm, bị chặn dưới bởi 0 nên có giới hạn. Ta cũng có giới hạn là 1. 
Vậy 
Bài 5
Gọi các số phải tìm có dạng 
Do số này chia hết cho 9 nên tổng các chữ số chia hết cho 9. 
Bước 1 Tìm tất cả các số chia hết cho 9
Có 10 cách chọn các chữ số , 10 cách chọn chữ số , ... , 10 cách chọn chữ số ứng với các 
cách chọn này có 9 cách chọn chữ số để thoả mãn bài toán. Vậy có số chia hết cho 9
Bước 2 Tìm số các số chia hết cho 9 không có chữ số 9 trong nó
Có 8 cách chọn các chữ số có 9 cách chọn do đó có tất cả số
Bước 3 Tìm số các số chia hết cho 9 mà trong nó chỉ có duy nhất một chữ số 9
Có số có n-1 chữ số thoả bài toán, ta đưa chữ số 9 vào số trên thì được 1 số thoả bài toán. Có (n-1) vị trí có thể đưa chữ số 9 vào
Như vậy có số
Cuối cùng số các số phải tìm là 
Tính tổng ni thì dễ dùng cấp số nhân với đạo hàm là ok
Ăn cơm cái đã, tí nữa post tiếp 
Nhầm hết rồi 
Đính chính lại này
Gọi các số phải t“m có dạng 
Do số này chia hết cho 9 nên tổng các chữ số chia hết cho 9. 
Bước 1 T“m tất cả các số chia hết cho 9
Có 10 cách chọn các chữ số , 10 cách chọn chữ số , ... , 10 cách chọn chữ số ứng với các 
cách chọn này có 1 cách chọn chữ số để thoả mãn bài toán. Vậy có số chia hết cho 9
Bước 2 T“m số các số chia hết cho 9 không có chữ số 9 trong nó
Có 8 cách chọn các chữ số có 9 cách chọn,chữ số a_n có duy nhất 1 cách chọn.Do đó có tất cả số
Bước 3 T“m số các số chia hết cho 9 mà trong nó chỉ có duy nhất một chữ số 9
Nếu số 9 đứng đầu: Có số( và có 1 cách chọn)
Nếu số 9 không đứng đầu : Có (Lấy số có chữ số không có số 9 nào r�“i thêm số 9 vào)
Còn đây là bài 1
Giả sử hệ có nghiệm (x,y). Ta có x,y>0.
Đặt và 
Ta có hệ (1)
Suy ra 
Đặt 
Ta có 
(2)
Lại xét hàm 
Ta có 
Khi đó .
từ đó, g(t) là hàm đồng biến trên đoạn (3)
Nhận xét: Từ (1) nếu a<0 thì b<0 . Khi đó dễ thấy (loại)
nếu a>0 thì b>0 suy ra và 
Từ (2) (3) suy ra 
Mặt khác ta có kết hợp với bảng biến thiên suy ra phương trình có 2 nghiệm, từ đó dễ dàng suy ra hệ có 2 nghiệm.
Bài 7 thì mình sử dụng phương pháp tọa độ, tuy nhiên lời giải hơi dài, sẽ post sau
Còn đây là bảng biến thiên của bài 1 mình giải ở trên

Tài liệu đính kèm:

  • docDe va loi giai Toan HSGQG12.doc