Giáo án Tiết 29, 30, 31 - Bài 3: Logarit

Giáo án Tiết 29, 30, 31 - Bài 3: Logarit

1. Kiến thức: Học sinh cần nắm:

 + Định nghĩa logarit theo cơ số dương khác 1 dựa vào khái niệm lũy thừa.

 + Tính chất và các công thức biến đổi cơ số logarit

 + Các ứng dụng của nó.

2. Kỹ năng: Giúp học vận dụng được định nghĩa, các tính chất và công thức đổi cơ số của logarit để giải các bài tập.

3. Tư duy và thái độ:

 + Nắm định nghĩa, tính chất biến đổi logarit và vận dụng vào giải toán

 + Rèn luyện kỹ năng vận dụng vào thực tế.

 + Có thái độ tích cực, tính cẩn thận trong tính toán.

II. Chuẩn bị của giáo viên và học sinh:

1. Giáo viên: Lưu ý khái niệm lũy thừa và các tính chất của nó để đưa ra định nghĩa và tính chất của logarit, phiếu học tập.

2. Học sinh: Nắm vững các tính chất của lũy thừa và chuản bị bài mới.

III. Phương pháp: Gợi mở, vấn đáp, vận dụng.

 

doc 5 trang Người đăng haha99 Lượt xem 2500Lượt tải 2 Download
Bạn đang xem tài liệu "Giáo án Tiết 29, 30, 31 - Bài 3: Logarit", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Ngày soạn: 27/ 10/ 2008.
§3: LOGARIT.
 ( Tiết 29-30-31).
I. Mục tiêu:
	1. Kiến thức: Học sinh cần nắm:
	+ Định nghĩa logarit theo cơ số dương khác 1 dựa vào khái niệm lũy thừa.
	+ Tính chất và các công thức biến đổi cơ số logarit
	+ Các ứng dụng của nó.
2. Kỹ năng: Giúp học vận dụng được định nghĩa, các tính chất và công thức đổi cơ số của 	logarit để giải các bài tập.
3. Tư duy và thái độ:
	+ Nắm định nghĩa, tính chất biến đổi logarit và vận dụng vào giải toán
	+ Rèn luyện kỹ năng vận dụng vào thực tế.
	+ Có thái độ tích cực, tính cẩn thận trong tính toán.
II. Chuẩn bị của giáo viên và học sinh:
Giáo viên: Lưu ý khái niệm lũy thừa và các tính chất của nó để đưa ra định nghĩa và tính chất của logarit, phiếu học tập.
Học sinh: Nắm vững các tính chất của lũy thừa và chuản bị bài mới.
III. Phương pháp: Gợi mở, vấn đáp, vận dụng.
IV. Tiến trình bài dạy: (Tiết 1)
Ổn định tổ chức: Điểm danh, ổn định lớp.
Kiểm tra bài cũ: + Nêu các tính chất của lũy thừa.
 + Tìm x sao cho 2x = 8.
	Hoạt động 1: Bài cũ của học sinh
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
+HS nêu các tính chất của lũy thừa?
+Từ các tc đó hãy tìm x biết 2x = 8.
GV: Ghi lại các ý cần thiết và ĐVĐề:
+ Có thể tìm x biết 2x = 5?
+ Giá trị x tm gọi là gì và có giá trị bao nhiêu, bài học hôm nay chúng ta sẽ học.
+ Hs lên bảng thực hiện.
+ 2x = 23 x = 3.
M ột s ố t/c:Cho a > 0, và
+ 
+ Nếu a = 1: 
+ Nếu a > 1:
+ Nếu 0 <a <1: 
+ Nếu 0 <a 1: 
Bài mới:
Hoạt động2: Định nghĩa và ví dụ.
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
-Yc hs xem sách giáo khoa
-Đặt y = log24 ; y= ?(ĐN)
-T/tự log2 = ?
-Hs đọc định nghĩa1 SGK
- y = 2
- log2 = -2
1.Định nghĩa và ví dụ.
 a. Định nghĩa1(SGK)
 b. Ví dụ1:
Tính log24 và log2?
-Nội dung được chỉnh sửa.
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
-Hs xem chú ý 1, 2 SGK
- Nếu xét biểu thức logax thì có điều kiện gì?
- Tính nhanh: log51, log33, Log334?
-Hs xem chú ý 3SGK
-GV gợi ý sử dụng ĐN và chú ý 3 để tính
-Hs thực hiện
- 0 0
- 0, 1, 4
-Hs thực hiện
-HS lên bảng trình bày.
-Các HS còn lại nhận xét kết quả lần lượt bằng -1; -;144; 1 và -8.
 c.Chú ý:
 +1), 2) (SGK)
ĐK logax là 
 + 3) (SGK)
d.Ví dụ2
Tính các logarit sau: log2; log10; 9log312; 0,125log0,11?
Tìm x biết log3(1-x) = 2?
Hoạt động 3: Tính chất
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
- Nếu logab > logac thì nhận xét gì về b và c?
-Gợi ý xét 2 TH của a
 + a>1 
 + 0 < a < 1, T/Tự Th trên so sánh alogab và alogab ?
-Hs phân loại số dương và số âm? Từ đó KL
- Hs sử dụng số 1 để so sánh, chẳng hạn :
log45> log44 = 1
-HS trả lời không được có thể xem SGK
-Hs dùng t/c của lũy thừa và chú ý 3 Cm được b < c.
>0 > 
log45> log44 = 1=log77>log73
2. Tính chất:
Định lý1 (SGK)
*Hệ quả: (SGK)
*Ví dụ 3: So sánh và ?
So sánh log45 và log73
-Các nội dung đã được chỉnh sửa
Hoạt động 4:Củng cố.
Phiếu học tập số1
Câu 1) Biểu thức log2(1-x2) có điều kiện gì?
	A. x > 1.	B. x 1. 
Câu2) Kết quả của log3log2 là:
	A. -1.	B. 1.	C. 3.	D. .
Câu3) Biết loga > loga Khi đó a thỏa điều kiện nào sau đây?
	A. a >1.	B. 0< a <1.	C. 0< a 1.	D. .
Tiết 2.
Hoạt động5: Các quy tắc tính logarit.
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
7’
5’
7’
-Chia lớp thành 2 nhóm:
 +Nhóm 1: Rút gọn các biểu thức: aloga(b.c); ; 
 + Nhóm2:: Rút gọn các biểu thức: ; ; 
-Hãy so sánh 2 nhóm kết quả trên
-Hs xem xét công thức.
-Hs xem xét điều kiện ở hai vế
-Từ định lý Hs tự suy ra hệ quả SGK
-Hs có thể biến đổi theo nhiều cách bằng cách sử dụng qui tắc tính logarit và hệ quả của nó
-Nhóm1 báo cáo kết quả.
-Nhóm 2 báo cáo kết quả
-Hs phát hiện định lý.
-Đúng theo công thức
-Không giống nhau.
-Vậy mệnh đề không đúng.
-HS phát biểu hệ quả.
-Hs lên bảng giải
-Các hs còn lại nhận xét và hoàn chỉnh bài giải có kq bằng 2.
b.Các quy tắc tính logarit
 *Định lý2: ( SGK)
 Chú ý: (SGK)
 *Vídụ4:Cho biết khẳng định sau đúng hay sai?Vì sao? ta có
loga(x2-1)=loga(x-1)+loga(x+1)
-Nội dung đã được chỉnh sửa.
 *Hệ quả (SGK)
 *Ví dụ 5: Tính
log5 - + log550
-Nội dung đã được chỉnh sửa.
Hoạt động 6: Đổi cơ số của logarit.
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
5’
15’
-Hs rút gọn 2 biểu thức sau và so sánh kq: alogac và 
alogab.logbc
-Chia lớp thành 4 nhóm và phân công giải 4 VD trên.
 HD: Sử dụng ĐL3 và 2 HQ của nó.
-Gv hoàn chỉnh các bài giải.
-Hs thực hiện tính được kq và phát hiện ra Định lý3
-Hs tính được kq bằng 12
-HS tính được Kq bằng 54
-Hs tìm được x =9 và x = .
-Hs tìm được x = 729.
-Các nhóm có thể đề xuất các cách biến đổi khác nhau.
3.Đổi cơ số của logarit
 a.Định lý3 (SGK)
 b.Hệ quả1 và Hệ quả2 (SGK)
 c.Ví dụ6:Tính 
 log516.log45.log28.
 Tìm x biết
 log3x.log9x = 2
 log3x+log9x+log27x = 1
-Các nội dung đã được chỉnh sửa.
Hoạt động 7: Củng cố
Phiếu học tập số2
Câu1) Kết quả của là:
	A. 2.	B. 4.	C. 6.	D. 8.
Câu2) Giá trị của x thỏa mãn: log5(x-2) + log5(x-3) = 2log52 + log53 là:
	A. x= -1, x =6.	B. x = -1.	C. x = 6.	D. Không tìm được.
Câu3) Biết log153 = a. Tính log2515 theo a?
	A. 1-a.	B. 2-2a.	C. .	D. .
Tiết3.
Hoạt động8: Định nghĩa logarit thập phân của x
TG
Hoạt động của giáo viên
Hoạt động của học sinh
Ghi bảng
5’
10’
5’
10’
10’
-Y/c Hs nhắc lại Đn logarit
-Khi thay a =10 trong ĐN đó ta được gì?
-Tính chất của nó như thế nào?
-Biến đổi A về logarit thập phân
-T/tự đối với B
-Y/c HS nghiên cứu VD 6 SGK trang 87.
-Lấy logarit thập phân của 2,13,2
-HD HS nghiên cứu VD7SGK
-HS nhắc lại công thức lãi kép.
-Bài toán yêu cầu tìm đại lượng nào?
-Làm thế nào tìm được N.
-Nếu gửi theo kỳ hạn 3 tháng với lãi suất như trên thì mất bao nhiêu năm. Khi đó N có đơn vị gì?
-Cách tính số các chữ số của một số trong hệ thập phân.
-Hướng dẫn VD8 SGK
-tính n = [logx] với x = 21000
-HS thực hiện.
-HS chiếm lĩnh được Đn
-Hs nêu đầy đủ các tính chất của logarit với cơ số a>1.
-A=2log10-log5=log20
-B=log10+log9=log90
B > A.
-log2,13,2 = 3,2log2,1 = 1,0311
2,13,2= 101,0311=10,7424
-Tìm hiểu nội dung VD 7 SGK theo hướng dẫn của giáo viên.
- C = A(1+r)N
 A: Số tiền gửi.
 C: Tiền lãi + vốn sau N năm gửi
 r: Lãi suất
 N: Số năm gửi.
-Tìm N.
 12 = 6(1+0,0756)N
- Lấy logarit thập phân hai vế đẳng thức trên. N
-N: Số quí phải gửi
Và N = 9,51 (quí) 
-Tiếp thu cách tính theo hướng dẫn của GV.
-Đọc, hiểu VD8 SGK
-n=[log21000]=301
Số các chữ số của 21000 là 301+1=302.
4. Logarit thập phân và ứng dụng.
 a. Định nghĩa2 (SGK)
 *Chú ý:Logarit thập phân có đầy đủ tính chất của logarit với cơ số a>1.
 *VD: So sánh;
A = 2 – log5 và
B = 1+2log3
Lời giải của HS.
b.Ứng dụng.
 * Vd6 (SGK)
 *VD7 (SGK) Bài toán tính lãi suất.
*Bài toán tìm số các chữ số của một số:
 Nếu x = 10n thì logx = n. Còn x 1 tùy ý, viết x trong hệ thập phân thì số các chữ số đứng trước dấu phẩy của x là n+1 với n = [logx].
*VD8 (SGK)
4.Củng cố toàn bài (5’)
	Yêu cầu học sinh thực hiện điền đầy đủ thông tin vào hai bảng sau:
Định lý
Hệ quả
ĐL1:
HQ:
ĐL2:
HQ:
ĐL3:
HQ:
ĐN logarit:
Các chú ý:
ĐN logarit thập phân:
Các ứng dụng của nó:
	+ Về nhà: Học thuộc các ĐN , ĐL và các hệ quả của nó.
	+ BT: 23-31 trang 89-90, 32-41 trang 92,93,94 SGK.

Tài liệu đính kèm:

  • docTiet 29-30-31 §3.LOGARIT.doc