Giáo án ôn thi tốt nghiệp toán 12 - Phần 1: Ứng dụng đạo hàm - Khảo sát và vẽ đồ thị hàm số

Giáo án ôn thi tốt nghiệp toán 12 - Phần 1: Ứng dụng đạo hàm - Khảo sát và vẽ đồ thị hàm số

1. Ứng dụng đạo hàm cấp một để xét tính đơn điệu của hàm số. Mối liên hệ giữa sự đồng biến, nghịch biến của một hàm số và dấu hàm cấp một của nó.

 2. Cực trị của hàm số. Điều kiện đủ để có cực trị. Điểm cực đại, điểm cực tiểu, điểm cực trị của hàm số. Các điều kiện đủ để có điểm cực trị của hàm số.

 3. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một tập hợp số.

 4. Đường tiệm cận của đồ thị hàm số. Đường tiệm cận đứng, đường tiệm cận ngang.

 5. Khảo sát hàm số. Sự tương giao của hai đồ thị. Phương trình tiếp tuyến của đồ thị hàm số. Các bước khảo sát và vẽ đồ thị hàm số (tìm tập xác định, xét chiều biến thiên, tìm cực trị, tìm tiệm cận, lập bảng biến thiên, vẽ đồ thị).

 

doc 86 trang Người đăng haha99 Lượt xem 941Lượt tải 0 Download
Bạn đang xem 20 trang mẫu của tài liệu "Giáo án ôn thi tốt nghiệp toán 12 - Phần 1: Ứng dụng đạo hàm - Khảo sát và vẽ đồ thị hàm số", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Phần 1.ỨNG DỤNG ĐẠO HÀM -KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ
1. Các kiến thức cơ bản cần nhớ
	1. Ứng dụng đạo hàm cấp một để xét tính đơn điệu của hàm số. Mối liên hệ giữa sự đồng biến, nghịch biến của một hàm số và dấu hàm cấp một của nó.
	2. Cực trị của hàm số. Điều kiện đủ để có cực trị. Điểm cực đại, điểm cực tiểu, điểm cực trị của hàm số. Các điều kiện đủ để có điểm cực trị của hàm số. 
	3. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một tập hợp số.
	4. Đường tiệm cận của đồ thị hàm số. Đường tiệm cận đứng, đường tiệm cận ngang.
	5. Khảo sát hàm số. Sự tương giao của hai đồ thị. Phương trình tiếp tuyến của đồ thị hàm số. Các bước khảo sát và vẽ đồ thị hàm số (tìm tập xác định, xét chiều biến thiên, tìm cực trị, tìm tiệm cận, lập bảng biến thiên, vẽ đồ thị).
2. Các dạng toán cần luyện tập
	1. Xét sự đồng biến, nghịch biến của một hàm số trên một khoảng dựa vào dấu đạo hàm cấp một của nó.
	2. Tìm điểm cực trị của hàm số.
	3. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn, một khoảng.
	4. Tìm đường tiệm cận đứng, tiệm cận ngang ,ti ệm c ận xi ên của đồ thị hàm số.
	5. Khảo sát và vẽ đồ thị của hàm số
	, trong đó a, b, c là các số cho trước.
	6. Dùng đồ thị hàm số để biện luận số nghiệm của một phương trình.
	7. Viết phương trình tiếp tuyến của đồ thị hàm số tại một điểm thuộc đồ thị hàm số.
8. Tìm trên đồ thị những điểm có tính chất cho trước(như điểm cố định). Tương giao giữa hai đồ thị (một trong hai đồ thị là đường thẳng);
 Chuyên đ ề 1. TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ
 Điều kiện cần để hàm số đơn điệu trên khoảng I
a/ Nếu hàm số y = f(x) đồng biến trên khoảng I thì f/(x)0 với xI
b/ Nếu hàm số y = f(x) nghịch biến trên khoảng I thì f/(x) 0 với xI
Ví dụ 1: Xét chiều biến thiên của hàm số y = x4 – 2x2 + 1
HD: Hàm số đồng biến trên các khoảng (-1;0) và (1 ; +)
Hàm số nghịch biến trên các khoảng (-;-1) và (0;1)
Ví dụ 2: Xét chiều biến thiên của hàm số y = x + 
Ví dụ 3: xét chiều biến thiên của hàm số y = x3 -x2 +x +
Ví dụ 4: c/m hàm số y = nghịch biến trên [0 ; 3]
Ví dụ 5 c/m hàm sồ y = nghịch biến trên từng khoảng xác định của nó
Ví dụ 6.Tìm các giá trị của tham số a để hàmsố f(x) =x3 + ax2+ 4x+ 3 đồng biến trên R
Ví dụ 7 sinx + tanx> 2x với x(0 ; )
BÀI TẬP. ĐỒNG BIẾN VÀ NGHỊCH BIẾN
1. Cho hàm số có đồ thị .	CMR hàm số đồng biến trên khoảng xác định.
2. Tìm các khoảng đồng biến, nghịch biến của hàm số .
3. CMR hàm số đồng biến trên khoảng và nghịch biến trên khoảng .
4. Tìm các khoảng đồng biến, nghịch biến của hàm số y = f(x) = 
5. Cho hµm sè y=x3-3(2m+1)x2+(12m+5)x+2. T×m m ®Ó hµm sè lu«n ®ång biÕn.
6. Cho hµm sè y=mx3-(2m-1)x2+(m-2)x-2. T×m m ®Ó hµm sè lu«n ®ång biÕn.
7. Xaùc ñònh ñeå haøm soá:
a, ñoàng bieán treân taäp xaùc ñònh.
b, nghòch bieán treân taäp xaùc ñònh.
c, nghòch bieán treân töøng khoaûng xaùc ñònh. 
8. Chöùng minh raèng vôùi x > 0, ta coù: 
9. Cho haøm soá 
a. CMR haøm soá ñoàng bieán treân 	b. CMR 
Chuyên đ ề 2 . Cực trị hàm số
I - Mục tiêu:
 1. Kiến thức: 
- H ọc sinh n ắm v ững ki ến th ức liên quan đến cực trị hàm số đã học
2. Kĩ năng: T¨ng c­êng kü n¨ng gi¶i to¸n, cñng cè kiÕn thøc ®· häc vµ t×m hiÓu 1 sè kiÕn thøc míi n©ng cao vÒ khảo sát hàm số, c¸c bµi to¸n liªn quan.
 3. Th¸i ®é: Lµm cho HS tù tin, høng thó, kiªn tr×, s¸ng t¹o trong häc tËp m«n To¸n.
II - Chuẩn bị của thầy và trò: 
 - Sách giáo khoa, biểu bảng biểu diễn đồ thị của một số hàm số.
III - Tiến trình tổ chức bài học:
1. Ổn định lớp:
 - Sỹ số lớp: 
 - Nắm tình hình sách giáo khoa, sự chuẩn bị bài tập của học sinh.
 2. Bài mới: 
CÁC BÀI TOÁN VỀ CỰC TRỊ
LÝ THUYẾT CẦN NHỚ: Cho hàm số ,đồ thị là (C). Các vấn đề về cực trị cần nhớ:
Nghiệm của phương trình là hoành độ của điểm cực trị
Nếu thì hàm số đạt cực đại tại 
Nếu thì hàm số đạt cực tiểu tại .
Một số dạng bài tập về cực trị thường gặp
Để hàm số có 2 cực trị 
Để hàm số có hai cực trị nằm về 2 phía đối với hoành 
Để hàm số có hai cực trị nằm về 2 phía đối với trục tung 
Để hàm số có hai cực trị nằm trên trục hoành 
Để hàm số có hai cực trị nằm dưới trục hoành 
Để hàm số có cực trị tiếp xúc với trục hoành 
Cách viết phương trình đường thẳng đi qua hai điểm cực trị.
Dạng 1: hàm số 
Lấy y chia cho y’, được thương là q(x) và dư là r(x). Khi đó y = r(x) là đường thẳng đi qua 2 điểm cực trị.
Dạng 2: Hàm số 
Đường thẳng qua 2 điểm cực trị có dạng 
1) Xác định tham số m để hàm số y=x3-3mx2+(m2-1)x+2 đạt cực đại tại x=2.
	( Đề thi TNTHPT 2004-2005) 	Kết quả : m=11
2) Định m để hàm số y = f(x) = x3-3x2+3mx+3m+4 
a.Không có cực trị.	Kết quả : m ³1
b.Có cực đại và cực tiểu.	Kết quả : m <1
c. Có đồ thị (Cm) nhận A(0; 4) làm một điểm cực trị (đạt cực trị 4 khi x = 0).
 Hd: M(a;b) là điểm cực trị của (C): y =f(x) khi và chỉ khi:
 	 	 Kết quả : m=0
 d.Có cực đại và cực tiểu và đường thẳng d qua cực đại và cực tiểu đi qua O.Kq : y = 2(m-1)x+4m+4 và m= -1 
3) Định m để hàm số y = f(x) = 
a. Có cực đại và cực tiểu.	Kết quả : m>3 
b.Đạt cực trị tại x = 2.	 Kết quả : m = 4
c.Đạt cực tiểu khi x = -1	Kết quả : m = 7
4) Chứng tỏ rằng với mọi m hàm số y = luôn có cực trị.
5) Cho hàm số y = f(x) =x3-mx2+(m2-m+1)x+1. Có giá trị nào của m để hàm số đạt cực tiểu tại x = 1 không? 	Hd và kq : Sử dụng đkc,đkđ. Không
6) Cho hàm số y = f(x) =x3-mx2+(m+2)x-1. Xác định m để hàm số:
a) Có cực trị.	 Kết quả: m 2
b) Có hai cực trị trong khoảng (0;+¥).	Kết quả: m > 2
c) Có cực trị trong khoảng (0;+¥).	Kết quả: m 2
7) Biện luận theo m số cực trị của hàm số y = f(x) = -x4+2mx2-2m+1. Hd và kq : y’=-4x(x2-m)
B ài t ập.CỰC TRỊ
Câu 1: Chứng minh hàm số luôn có cực trị với mọi giá trị của tham số m.
Câu 2: Xác định tham số m để hàm số đạt cực đại tại điểm .
Câu 3: Cho hàm số , có đồ thị là .Xác định m để hàm số có cực đại và cực tiểu.
Câu 4: Cho hàm số , có đồ thị là Xác định m để hàm số có cực đại và cực tiểu.
Câu 5: Tìm a để hàm số đạt cực tiểu khi x=2.
Câu 6: Tìm m để hàm số có một cực đại tại .
Câu 7: Tìm m để hàm số sau đây đạt cực trị
	1) 	2) 	3) 
Câu 8: Tính giá trị cực trị của hàm số .Viết phương trình đường thẳng đi qua 2 điểm cực trị.
Câu 9: Tính giá trị cực trị của hàm số .Viết pt đường thẳng đi qua 2 điểm cực trị.
Câu 10: Tìm m để hàm số có cực đại, cực tiểu.
Câu 12: Chứng minh với mọi m, hàm số luôn có cực đại, cực tiểu. Tìm m để cực đại thuộc góc phần tư thứ nhất.
Caâu 13: Xaùc ñònh ñeå haøm soá:
1, coù cöïc ñaïi vaø cöïc tieåu.
2, coù 3 cöïc trò.
3, ñaït cöïc tieåu taïi .
4, ñaït cöïc ñaïi taïi 
5, ñaït cöïc ñaïi taïi 
6. Cho hµm sè: . T×m m ®Ó hµm sè cã cùc tiÓu thuéc (P): x2 + x - 4 = 0
7. Cho hµm sè: c ó c ực tr ị
8. T×m m ®Ó hµm sè cã cùc ®¹i vµ cùc tiÓu vµ hoµnh ®é c¸c ®iÓm C§ vµ CT x1,x2 tho¶ ®iÒu kiÖn:	x1+2x2=1.
9. Cho hs: 
 T×m m ®Ó hs cã cùc ®¹i vµ cùc tiÓu vµ tho¶ 
	_______________________________________________________________________
 Chuyên đ ề 3 . Giá trị lớn nhất, giá trị nhỏ nhất của hàm số
Ngày soạn: 	Ngày dạy:
I/ Mục tiêu:
1/ Về kiến thức: Giúp học sinh hiểu rõ giá trị lớn nhất, giá trị nhỏ nhất của hàm số
2/ Về kỹ năng: Rèn luyện cho hs có kỹ năng thành tạo trong việc tìm GTLN, GTNN của hàm số và biết ứng dụng vào bài toán thực tế.
3/ Về tư duy thái độ:
+ Đảm bảo tính chính xác, linh hoạt.
+ Thái độ nghiêm túc, cẩn thận.
II/ Chuẩn bị của GV và HS
1/ GV: Giáo án, bảng phụ
2/ Hs: nắm vững lí thuyết về cực trị, GTLN, GTNN. Chuẩn bị trước bt ở nhà.
III/ Phương pháp: Gợi mở, vấn đáp
IV/ Tiến trình tiết dạy:
1/ Ổn định lớp:
2. Kiểm tra bài cũ
3/ Bài mới:
1) Tìm giá trị nhỏ nhất của hàm số y=f(x)=x2-2x+3. Kq:f(x) = f(1) = 2
2) Tìm giá trị lớn nhất và nhỏ nhất của hàm số y = f(x) = x2-2x+3 trên [0;3].	Kq: f(x)=f(1)=2 và f(x)=f(3)=6.
3) Tìm giá trị lớn nhất của hàm số y = f(x) = với x<1.	Kết quả : f(x) = f(0) = -4
4) Muốn xây hồ nước có thể tích V = 36 m3, có dạng hình hộp chữ nhật (không nắp) mà các kích thước của đáy tỉ lệ 1:2. Hỏi: Các kích thước của hồ như thế nào để khi xây ít tốn vật liệu nhất?	
Kết quả : Các kích thước cần tìm của hồ nước là: a=3 m; b=6 m và c=2 m
5) Tìm giá trị lớn nhất của hàm số y = . Kết quả : y = f(±1) = 
6) Định m để hàm số y = f(x) = x3 -3(m+1)x2+3(m+1)x+1 nghịch biến trên khoảng( -1;0).Kết quả : m £ 
7) Tìm trên (C): y = điểm M sao cho tổng các khoảng cách từ M đến hai trục tọa độ là nhỏ nhất.
Kết quả :M(0;)
8) Tìm giá trị nhỏ nhất và lớn nhất của hàm số y = 3 sinx – 4 cosx.
9) Tìm GTLN: y=-x2+2x+3. 	Kết quả: y=f(1)= 4
10) Tìm GTNN y = x – 5 + với x > 0.	Kết quả: y=f(1)= -3
 11) Tìm GTLN, GTNN y = x – 5 + . Kết quả: ; 
12) Tìm GTLN, GTNN của hàm số y=2x3+3x2-1 trên đoạn Kết quả: ; 
13) Tìm GTLN, GTNN của:
 a) y = x4-2x2+3.	Kết quả: y=f(±1)=2; Không có y
 b) y = x4+4x2+5.	Kết quả: y=f(0)=5; Không có y
 c).	Kết quả: y=; y=1 d).	Kết quả: y=; y=3
14) Cho hàm số . Chứng minh rằng : 
15) Cho hàm số . Chứng minh rằng : -1£ y £ 1
Hướng dẫn:y’=0 Û 2sin2a . x2-2sin2a =0 Û x=-1 V x=1. Tiệm cận ngang: y=1
Dựa vào bảng biến thiên kết luận -1£ y £ 1.
16) Tìm giá trị LN và giá trị NN của hàm số y=2sinx- trên đoạn [0;p]
Kết quả:	f(x)=f(p /4)= f(3p /4)=; f(x)=f(0)=f(p )=0
4/ Củng cố: Nhắc lại quy tắc tìm GTLN, GTNN của hsố trên khoảng, đoạn. Lưu ý cách chuyển bài toán tìm GTLN, GTNN của hàm số lượng giác về bài toán dạng đa thức
BÀI TẬP.GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT
caâu 1: Tìm GTLN, GTNN cuûa haøm soá:
1. 	2. .	3. .
4. trên đoạn .	5. trên đoạn .
6. trên đoạn 	7. trên đoạn .
8. trên đoạn .	9. trên đoạn .
 caâu 10: Tìm GTLN, GTNN cuûa haøm soá:
 1, treân ñoaïn . 2, 	 treân ñoaïn
 3,	 y = .	4.	
 5.	 trªn .	6.	y = .
	 7. 	8. 	 trªn ®o¹n 
 _________________________________________________________________________
Chuyên đ ề 4 . Tiếp tuyến của đồ thị hàm số
Ngày soạn: 	Ngày dạy:
I/ Mục tiêu:
1/ Về kiến thức: Giúp học sinh hiểu rõ v ề tiếp tuyến
2/ Về kỹ năng: Rèn luyện cho hs có kỹ năng thành tạo trong việc vi ết pt tt 
3/ Về tư duy thái độ:
+ Đảm bảo tính chính xác, linh hoạt.
+ Thái độ nghiêm túc, cẩn thận.
II/ Chuẩn bị của GV và HS
1/ GV: Giáo án
2/ Hs: nắm vững lí thuyết về cực trị, GTLN, GTNN. Chuẩn bị trước bt ở nhà.
III/ Phương pháp: Gợi mở, vấn đáp
IV/ Tiến trình tiết dạy:
1/ Ổn định lớp:
2. Kiểm tra bài cũ
3/ Bài mới:
Cho haøm soá y=f(x) coù ñoà thò (C).Ta caàn vieát phöông trình tieáp tuyeán vôùi ñoà thò (C) trong caùc tröôøng hôïp sau:
1/ Taïi ñieåm coù toaï ñoä (x0;f(x0)) :
B1: Tìm f ’(x) f ’(x0)
B2: Phöông trình tieáp tuyeán vôùi (C) taïi ñieåm (x0;f(x0)) laø: y = (x–x0) + f(x0)
2/ Taïi ñieåm treân ñoà thò (C) coù hoaønh ñoä x0 :
B1: Tìm f ’(x) f ’(x0), f(x0) 
B2: Phöông trình tieáp tuyeán vôùi (C) taïi ñieåm coù hoaønh ñoä x0 laø:y = (x–x0) + f(x0)
3/ Taïi ñieåm treân ñoà thò (C) coù tung ñoää y0 :
B1: Tìm f ’(x) .
B2:Do tung ñoä laø y0f(x0)=y0. giaûi phöông trình naøy tìm ñöôïc x0 f /(x0) 
B3: Phöông trình tieáp tuyeán vôùi (C) taïi ñieåm coù tung ñoä y0 laø:y = (x–x0) + y0
4/ Bieát heä soá goùc cuûa tieáp tuyeán laø k:
B1: Goïi M0(x0;y0) laø tieáp ñieåm .
B2: Heä soá goùc tieáp tuyeán laø k neân : =k (*)
B3: Giaûi phöông trình (*) tìm x0 f(x0) phöông trình tieáp t ... ùi haïn bôûi ñoà thò haøm soá , truïc hoaønh vaø ñöôøng thaúng x= 1.
b/ Tìm m ñeå ñoà thò haøm soá coù 2 cöïc trò thoaû yCÑ .yCT = 5 
B/ Phaàn daønh cho thí sinh ban KHXH_ NV
Caâu 6: (2 ñ)
Trong khoâng gian Oxyz, cho ñieåm M(1;2;3)
a/ Vieát phöông trình maët phaúng () ñi qua M vaø song song vôùi maët phaúng .
b/ Vieát phöông trình maët caàu (S) coù taâm I(1;1;1) vaø tieáp xuùc vôùi maët phaúng ().
 Ñeà soá 35
Câu I: (3,0 điểm) 
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số . 
Viết phương trình đường thẳng đi qua điểm cực đại và điểm cực tiểu của đồ thị (C). (TH)
Dựa vào đồ thị (C), biện luận số nghiệm của phương trình sau theo . 
Câu II: (2,0 điểm)
Tính tích phân (TH)
Giải bất phương trình: (TH)
Câu III: (1,0 điểm)
Trong không gian cho điểm và mặt phẳng . Viết phương trình đường thẳng qua điểm và vuông góc với mặt phẳng . 
Câu IV: (2,0 điểm)
Giải phương trình sau trên tập hợp số phức: 
Thực hiện các phép tính sau: 
Câu V: (Thí sinh chọn một trong hai câu Va hoặc Vb)
Câu Va: (Dành cho thí sinh ban cơ bản) (2,0 điểm)
Trong không gian cho hai đường thẳng:
1. Viết phương trình mặt phẳng chứa và song song . (TH)
2. Tính khoảng cách giữa đường thẳng và mặt phẳng . (VD)
Câu Vb: (Dành cho thí sinh ban Khoa học tự nhiên) (2,0 điểm)
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng và cạnh bên bằng .
1. Tính thể tích của hình chóp đã cho. (VD)
2. Tính khoảng cách giữa hai đường thẳng và . (VD)
 Ñeà soá 36
I. PHẦN CHUNG CHO THÍ SINH CẢ 2 BAN ( 8,0 điểm )
 Câu 1: ( 3,5 điểm ). Cho hàn số y = x3 + 3x2 + 1.
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số .
2. Dựa vào đồ thị (C), biện luận số nghiệm của phương trình sau theo m:
 x3 + 3x2 + 1 = 
 Câu 2: ( 1,5 điểm ). Giải phương trình: 25x – 7.5x + 6 = 0.
 Câu 3: ( 1,0 điểm ). Tính giá trị của biểu thức Q = ( 2 + i )2 + ( 2 - i )2.
 Câu 4: ( 2,0 điểm ).
 Cho hình chóp tứ giác S.ABCD có đáy là hình vuông cạnh a, cạnh SA = 2a và SA vuông góc với mặt phẳng đáy ABCD. 
Hãy xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp đó.
Tính thể tích khối chóp S.ABCD.
II. PHẦN DÀNH CHO THÍ SINH TỪNG BAN ( 2,0 điểm ).
 A. Thí sinh Ban KHTN chọn câu 5a hoặc câu 5b.
 Câu 5a ( 2,0 điểm ).
Tính tích phân I = 
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
f(x) = 2 sinx + sin2x trên đoạn 
 Câu 5b ( 2,0 điểm ).
 Trong không gian Oxyz, cho các điểm A(-1; 2; 0), B(-3; 0; 2), C(1; 2; 3), D(0; 3; -2).
Viết phương trình mặt phẳng (ABC).
Viết phương trình mặt phẳng chứa AD và song song với BC.
 B. Thí sinh Ban KHXH-NV chọn câu 6a hoặc 6b.
 Câu 6a ( 2,0 điểm ).
Tính tích phân J = .
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số: 
 f(x) = 2x3 – 3x2 – 12x + 1 trên đoạn .
 Câu 6b ( 2,0 điểm ) 
 Cho mặt cầu (S) có đường kính là AB biết rằng A(6; 2; -5), B(-4; 0; 7).
 a) Tìm toạ độ tâm I và bán kính r của mặt cầu (S).
 b) Lập phương trình của mặt cầu (S).
 Ñeà soá 37
I. PHẦN CHUNG CHO THÍ SINH CẢ HAI BAN (8,0 điểm)
Câu 1 (3,5 điểm)
 Cho hàm số 
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trên.
Biên luận theo m số nghiêm của phương trình: 
Câu 2(1,5 điểm) Giải phương trình: 
Câu 3(1,5 điểm) Tìm nghiệm phức của phương trình:
Câu 4(1,5 điểm)
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác vuông tại đỉnh B, cạnh bên SA vuông góc với đáy. Biết . Tính thể tích của khối chóp S.ABC.
II. PHẦN DÀNH CHO THÍ SÍNH TỪNG BAN (2,0 điểm)
A. Thí sinh Ban KHTN chọn câu 5a hoặc câu 5b
Câu 5a (2,0 điểm)
Tính: 
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên 
Câu 5b (2,0 điểm)
Trong không gian với hệ tọa độ Oxyz, cho điểm và mặt phẳng (P) có phương trình 
Viết phương trình mặt phẳng (Q) đi qua điểm A và song song với mặt phẳng (P).
Viết phương trình tham số của đường thẳng d đi qua điểm A và vuông góc với mặt phẳng (P). Tìm tọa độ giao điểm H của đường thẳng d với mặt phẳng (P).
B. Thí sinh Ban KHXH &NV chọn câu 6a hoặc câu 6b
Câu 6a (2,0 điểm)
Tính: 
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên 
Câu 6b (2,0 điểm)
Trong không gian Oxyz, cho điểm và đường thẳng d:
Viết phương trình mặt phẳng đi qua A và vuông góc với d.
Tìm tọa độ điểm A’ đối xứng với điểm A qua đường thẳng d.
 Ñeà soá 38
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)
Câu I. (3,0 điểm) 
Cho hàm số 
Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.
Tìm tất cả các giá trị của tham số m để đường thẳng y = mx + 2 cắt đồ thị của hàm số đã cho tại hai điểm phân biệt.
Câu II. (3,0 điểm)
Giải bất phương trình: 
Tính tích phân: 
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) = x – e2x trên đoạn [-1 ; 0]
Câu III. (1,0 điểm)Cho khối chóp đều S.ABCD có AB = a, góc giữa mặt bên và mặt đáy bằng 600. Tính thể tích của khối chóp S.ABCD theo a.
PHẦN RIÊNG (3,0 điểm)
Theo chương trình Chuẩn:
Câu IVa. (2,0 điểm)Trong không gian với hệ tọa độ Oxyz, cho điểm A(1 ; 4 ; 2) và mặt phẳng (P) có phương trình : x + 2y + z – 1 = 0.
Hãy tìm tọa độ của hình chiếu vuông góc của A trên mặt phẳng (P).
Viết phương trình của mặt cầu tâm A, tiếp xúc với (P).
Câu Va. (1,0 điểm)
Tìm môđun của số phức : z = 4 – 3i + (1 – i)3
Theo chương trình Nâng cao
Câu IVb. (2,0 điểm)Trong không gian với hệ tọa độ Oxyz, cho điểm A(-1 ; 2 ; 3) và đường thẳng d có phương trình : .
Hãy tìm tọa độ của hình chiếu vuông góc của A trên d.
Viết phương trình của mặt cầu tâm A, tiếp xúc với d.
Câu Vb. (1,0 điểm)Viết dạng lượng giác của số phức: z = 1 – i. 
 Ñeà soá 39.
I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (8,0 điểm)
Câu I ( 3,0 điểm) 
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 
2. Tìm m để phương trình có bốn nghiệm thực phân biệt
Câu II (3,0 điểm) 
1. Tính tích phân 
2. Tìm giá trị lớn nhất, nhỏ nhất của hàm số trên đoạn 
3. Giải phương trình 
Câu III (2,0 điểm) Trong không gian với hệ toạ độ Oxyz cho đường thẳng và mặt phẳng lần lượt có phương trình ; 
1. Tìm toạ độ giao điểm của và mặt phẳng 
2. Viết phương trình mặt cầu tâm và tiếp xúc với mặt phẳng 
II. PHẦN RIÊNG (2,0 điểm)
A. Theo chương trình cơ bản
Câu IVa (1,0 điểm) Giải phương trình trên tập số phức
Câu IVb (1,0 điểm) Cho hình chóp đều có đáy là hình vuông cạnh , cạnh bên bằng . Tính thể tich của khối chóp theo .
 Đề số 40.
I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7điểm).
Câu I (2 điểm) Cho hàm số y = (1)
1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
2/ Cho điểm M(0 ; a). Xác định a để từ M kẻ được hai tiếp tuyến đến đồ thị của hàm số (1) sao cho hai tiếp tuyến tương ứng nằm về hai phía đối với trục Ox.
Câu II. (2 điểm).
1/ Giải phương trình : .
2/ Cho phương trình : (1).
Giải (1) khi m = 2
Tìm m để (1) có ít nhất một nghiệm .
Câu III. (1 điểm). Tính tích phân I = .
Câu IV. (1 điểm).Cho hình nón có bán kính đáy R và thiết diện qua trục là tam giác đều. Một hình trụ nội tiếp hình nón có thiết diện qua trục là hình vuông . Tính thể tích của khối trụ theo R.
Câu V. (1 điểm). Cho ba số thực không âm x, y, z thỏa x + y + z = 1. Tìm giá trị lớn nhất của biểu thức 
P = 
II. PHẦN RIÊNG.(3 điểm)
1.Theo chương trình chuẩn.
Câu VI a. (2 điểm)
1/ Trong mặt phẳng với hệ tọa độ Oxy cho hai đường tròn (C1): x2 + y2 = 13 và (C2): (x -6)2 + y2 = 25 cắt nhau tại A(2 ; -3). Lập phương trình đường thẳng đi qua A và cắt hai đường tròn theo hai dây cung có độ dài bằng nhau.
2/ Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng d1: và d2: . 
Lập phương trình mặt phẳng (P) song song cách đều d1 và d2 .
Lập phương trình mặt càu (S) tiếp xúc với d1 và d2 lần lượt tại A(2 ; 1 ; 0), B(2 ; 3 ; 0).
Câu VII a.(1 điểm). Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = trên đọan [ -3 ; 0 ].
2. Theo chương trình nâng cao.
Câu VI b. (2 điểm)
1/ Trong mặt phẳng với hệ tọa độ Oxy. Viết phương trình đường thẳng d qua M(8 ; 6) và cắt hai trục tọa độ tại A, B sao cho có giá trị nhỏ nhất.
2/ Trong không gian với hệ tọa độ Oxyz cho hai điểm A(1 ; 2 ; 1), B(3 ; -1 ; 5).
a)Tìm tọa độ hình chiếu vuông góc của gốc tọa độ O lên AB.
b)Viết phương trình mặt phẳng (P) vuông góc với AB và hợp với các mặt phẳng tọa độ thành một tứ diện có thể tích bằng 
Câu VII b. (1 điểm). Giải phương trình 
 Đề số 41.
I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm)
Câu I. (2 điểm). Cho hàm số y = x4 – 2(2m2 – 1)x2 + m (1)
1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 1.
2/ Tìm m để đồ thị của hàm số (1) tiếp xúc với trục hòanh.
Câu II. (2 điểm) 
1/ Giải phương trình: 
 	2/ Giải phương trình: 
Câu III. (1 điểm). Tính tích phân I = 
Câu IV. (1 điểm). Khối chóp tam giác S.ABC có đáy ABC là tam giác vuông cân đỉnh C và SA vuông góc mp(ABC), SC = a. Hãy tìm góc giữa hai mặt phẳng (SCB) và (ABC) để thể tích khối chóp lớn nhất.
Câu V. (1 điểm). Tìm m để bất phương trình sau nghiệm đúng mọi x0 ; 2].
II. PHẦN RIÊNG. (3 điểm)
1.Theo chương trình chuẩn.
Câu VI a.(2 điểm).
1/ Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC vuông tại C. Biết A(-2 ; 0), 
B( 2 ; 0) và khỏang cách từ trọng tâm G của tam giác ABC đến trục hòanh bằng . Tìm tọa độ đỉnh C.
2/ Trong không gian với hệ tọa độ Oxyz cho A(0 ; 1 ; 2), B(-1 ; 1 ; 0) và mặt phẳng 
(P): x – y + z = 0. Tìm tọa độ điểm M trên mặt phẳng (P) sao cho tam giác MAB vuông cân tại B.
Câu VII a. (1 điểm). Cho x, y, z > 0 thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức 
P = 
2. Theo chương trình nâng cao.
Câu VI b. (2 điểm)
1/ Trong mặt phẳng với hệ tọa độ Oxy cho elip (E): và đường thẳng (d): y = 2. Lập phương trình tiếp tuyến với (E), biết tiếp tuyến tạo với (d) một góc 600.
2/ Trong không gian với hệ tọa độ Oxyz cho M(2 ; 1 ; 2) và đường thẳng (d) : . Tìm trên (d) hai điểm A và B sao cho tam giác MAB đều.
Câu VII b. (1 điểm). Giải bất phương trình sau:
	 Đề số 42.
I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm)
Câu I (2 điểm). Cho hàm số y = x(x – 3)2 (1)
1/ Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1)
2/ Tìm tất cả các giá trị của a để đường thẳng (d): y = ax + b không thể tiếp xúc với đồ thị của hàm số (1).
Câu II (2 điểm)
1/ Tìm m để hệ phương trình : có nghiệm duy nhất.
2/ Giải phương trình : cos3x + sin7x = 
Câu III. (1 điểm). Tính tích phân I = 
Câu IV. (1 điểm). Cho khối chóp tam giác đều S.ABC có chiều cao bằng h và góc ASB bằng 2. Tính thể tích khối chóp.
Câu V. (1 điểm).Tìm m để phương trình : có nghiệm.
II. PHẦN RIÊNG. (3 điểm)
1.Theo chương trình chuẩn.
Câu VIa. (2 điểm)
1/ Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng (d) : 3x – 4y + 1 = 0. Lâp phương tình đường thẳng song song với (d) và cách (d) một khỏang bằng 1.
2/ Trong không gian với hệ tọa độ Oxyz cho đường thẳng (d): và điểm M(0 ; 2 ; 3). Lập phương trình mặt phẳng (P) chứa (d) và khỏang cách từ M đến (P) bằng 1.
Câu VIIa.(1 điểm). Giải phương trình : 
2. Theo chương trình nâng cao.
Câu VI b (2 điểm)
1/ Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E): 3x2 + 4y2 – 48 = 0. Gọi M là điểm thuộc (E) và F1M = 5. Tìm F2M và tọa độ điểm M. (F1, F2 là các tiêu điểm của (E)).
2/ Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d): và điểm 
M(4 ; 1 ; 6). Đường thẳng (d) cắt mặt cầu (S) tâm là M tại hai điểm A, B sao cho AB = 6. Viết phương trình của mặt cầu (S).
Câu VIIb.(1 điểm). Giải bất phương trình : 

Tài liệu đính kèm:

  • docGiao an on thi TN.doc