Giáo án lớp 12 môn Hình học - Tiết 19 - Bài tập mặt cầu

Giáo án lớp 12 môn Hình học - Tiết 19 - Bài tập mặt cầu

1. Về kiến thức:

i. Hs phải nắm kĩ các kiến thức định nghĩa mặt cầu, sự tương giao của mặt cầu với mặt phẳng, đường thẳng và công thức diện tích mặt cầu, thể tích khối cầu.

2. Về kỹ năng:

• Vận dụng kiến thức đã học để xác định mặt cầu, tính diện tích mặt cầu, thể tích khối cầu đã xác định đó.

3. Về tư duy, thái độ:

• Biết qui lạ về quen.

• Học sinh cần có thái độ cẩn thận, nghiêm túc, chủ động, tích cực hoạt động chiếm lĩnh tri thức mới.

 

doc 10 trang Người đăng haha99 Lượt xem 844Lượt tải 1 Download
Bạn đang xem tài liệu "Giáo án lớp 12 môn Hình học - Tiết 19 - Bài tập mặt cầu", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tiết 19
BÀI TẬP MẶT CẦU
I/ Mục tiêu:
Về kiến thức: 
Hs phải nắm kĩ các kiến thức định nghĩa mặt cầu, sự tương giao của mặt cầu với mặt phẳng, đường thẳng và công thức diện tích mặt cầu, thể tích khối cầu.
Về kỹ năng: 
Vận dụng kiến thức đã học để xác định mặt cầu, tính diện tích mặt cầu, thể tích khối cầu đã xác định đó.
Về tư duy, thái độ: 
Biết qui lạ về quen.
Học sinh cần có thái độ cẩn thận, nghiêm túc, chủ động, tích cực hoạt động chiếm lĩnh tri thức mới.
II/ Chuẩn bị của giáo viên và học sinh:
Giáo viên: 
Sách giáo viên, sách giáo khoa, giáo án, thước kẻ và compa 
Học sinh:
Ôn lại kiến thức đã học và làm trước các bài tập đã cho về nhà trong sách giáo khoa.
III/ Phương pháp: Gợi mở, vấn đáp, giải quyết vấn đề
IV/ Tiến trình bài học:
Ổn định tổ chức:
Kiểm tra bài cũ:
Câu hỏi 1: Nêu định nghĩa mặt cầu ? Nêu một vài cách xác định một mặt cầu đã biết ?
Câu hỏi 2: Các vị trí tương đối của đường thẳng và mặt cầu ? Từ đó suy ra điều kiện tiếp xúc của đường thẳng với mặt cầu ?
Câu hỏi 3: Nêu định nghĩa đường trung trực, mặt trung trực của đoạn thẳng.
Bài mới:
* Tiết 19: 
	Hoạt động 1: Giải bài tập 1 trang 49 SGK
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
10’
- Cho HS nhắc lại kết quả tập hợp điểm M nhìn đoạn AB dưới 1 góc vuông (hình học phẳng) ?
- Dự đoán cho kết quả này trong không gian ?
- Nhận xét: đường tròn đường kính AB với mặt cầu đường kính AB => giải quyết chiều thuận
- Vấn đề M Î mặt cầu đường kính AB => 
Trả lời: Là đường tròn đường kính AB
đường tròn đường kính AB nằm trên mặt cầu đường kính AB.
Hình vẽ 
(=>) vì => MÎ đường tròn dường kính AB => MÎ mặt cầu đường kính AB.
( MÎ đường tròn đường kính AB là giao của mặt cầu đường kính AB với (ABM)
=> 
Kết luận: Tập hợp các điểm M nhìn đoạn AB dưới góc vuông là mặt cầu đường kính AB.
	Hoạt động 2: Giải bài tập 2 trang 49 SGK
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
12’
Giả sử I là tâm mặt cầu ngoại tiếp S.ABCD, ta có điều gì ?
=> Vấn đề đặt ra ta phải tìm 1 điểm mà cách đều 5 đỉnh S, A, B, C, D.
- Nhận xét 2 tam giác ABD và SBD.
- Gọi O là tâm hình vuông ABCD => kết quả nào ?
- Vậy điểm nào là tâm cần tìm, bán kính mặt cầu?
Trả lời IA = IB = IC = ID = IS 
Bằng nhau theo trường hợp C-C-C
OA = OB = OC = OD = OS
- Điểm O
Bán kính r = OA= 
	 S
	 a
 a a a
 D C
	 a
A O B
	 a
S.ABCD là hình chóp tứ giác đều.
=> ABCD là hình vuông và SA = SB = SC = SD.
Gọi O là tâm hình vuông, ta có 2 tam giác ABD, SBD bằng nhau
=> OS = OA
Mà OA = OB= OC= OD
=> Mặt cầu tâm O, bán kính r = OA = 
	Hoạt động 3: Giải bài tập 3 trang 49 SGK
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
13’
Gọi (C) là đường tròn cố định cho trước, có tâm I.
Gọi O là tâm của một mặt cầu chứa đường tròn, nhận xét đường OI đối với đường tròn (C)
=> Dự đoán quĩ tích tâm các mặt cầu chứa đường tròn O.
Trên (C) chọn 3 điểm A,B,C gọi O là tâm mặt cầu chứa (C) ta có kết quả nào ?
Ta suy ra điều gì ? => O Î trục đường tròn (C) .
Ngược lại: Ta sẽ chọn (C) là 1 đường tròn chứa trên 1mặt cầu có tâm trên (D)?
=> O’M’ = ? 
HS trả lời: OI là trục của đường tròn (C) 
HS: là trục của đường tròn (C)
HS trả lời OA = OB = OC
HS: O nằm trên trục đường tròn (C) ngoại tiếp DABC.
O’M = không đổi.
=> M Î mặt cầu tâm O’
=> (C) chứa trong mặt cầu tâm O’ 
	 O
 A C
 I
	 B
=> Gọi A,B,C là 3 điểm trên (C). O là tâm của một mặt cầu nào đó chứa (C) 
Ta có OA = OB = OC => O ÎD trục của (C) 
(<=)"O’Î(D) trục của (C) 
với mọi điểm MÎ(C) ta có O’M = 
= không đổi
=> M thuộc mặt cầu tâm O’ bán kính 
=> Kết luận: bài toán : Tập hợp cần tìm là trục đường tròn (C).
Hoạt động 4: Giải bài tập 5 trang 49 SGK
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
8’
Nhận xét: Mặt phẳng (ABCD) có :
- Cắt mặt cầu S(O, r) không ? giao tuyến là gì ?
- Nhận xét MA.MB với MC.MD nhờ kết quả nào?
- Nhận xét: Mặt phẳng (OAB) cắt mặt cầu S(O,r) theo giao tuyến là đường tròn nào?
- Phương tích của M đối với (C1) bằng các kết quả nào ?
Trả lời: cắt
- Giao tuyến là đường tròn (C) qua 4 điểm A,B,C,D.
- Bằng nhau: Theo kết quả phương tích.
- Là đường tròn (C1) tâm O bán kính r có MAB là cát tuyến.
- MA.MB hoặc MO2 – r2 
a)Gọi (P) là mặt phẳng tạo bởi (AB,CD) 
=> (P) cắt S(O, r) theo giao tuyến là đường tròn (C) qua 4 điểm A,B,C,D 
=> MA.MB = MC.MD
b)Gọi (C1) là giao tuyến của S(O,r) với mp(OAB) => C1 có tâm O bán kính r .
Ta có MA.MB = MO2-r2 
	 = d2 – r2 
Hoạt động 5: Giải bài tập 6 trang 49 SGK
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
7’
- Nhận xét: đường tròn giao tuyến của S(O,r) với mặt phẳng (AMI) có các tiếp tuyến nào?
- Nhận xét về AM và AI 
Tương tự ta có kết quả nào ?
- Nhận xét 2 tam giác MAB và IAB
- Ta có kết quả gì ?
AM và AI 
Trả lời: 
	AM = AI 
	BM = BI
DMAB = DIAB (C-C-C)
- Gọi (C) là đường tròn giao tuyến của mặt phẳng (AMI) và mặt cầu S(O,r). Vì AM và AI là 2 tiếp tuyến với (C) nên AM = AI.
Tương tự: BM = BI
Suy ra DABM = DABI 
	 (C-C-C)
=> 
* Tiết 20: 
Hoạt động 6: Giải bài tập 7 trang 49 SGK
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
a)
7’
Nhắc lại tính chất : Các đường chéo của hình hộp chữ nhật độ dài đường chéo của hình hộp chữ nhật có 3 kích thước a,b,c
=> Tâm của mặt cầu qua 8 đỉnh A,B,C,D,A’,B’,C’,D’ của hình hộp chữ nhật.
Bán kính của mặt cầu này
Trả lời: Đường chéo của hình hộp chữ nhật bằng nhau và cắt nhau tại trung điểm mỗi đường 
AC’ = 
Vẽ hình: 
 B C
 I
 A D
 O
 B’ C’
 A’ D’
Gọi O là giao điểm của các đường chéo hình hộp chữ nhật ABCD.A’B’C’D’.
Ta có OA = OB = OC =OD=OA’=OB’=OC’=OD’
=> O là tâm mặt cầu qua 8 dỉnh hình hộp chữ nhật ABCD.A’B’C’D’ và bán kính r = 
Hoạt động 7: Giải bài tập 7 trang 49 SGK
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
a)
7’
Nhắc lại tính chất : Các đường chéo của hình hộp chữ nhật độ dài đường chéo của hình hộp chữ nhật có 3 kích thước a,b,c
=> Tâm của mặt cầu qua 8 đỉnh A,B,C,D,A’,B’,C’,D’ của hình hộp chữ nhật.
Bán kính của mặt cầu này
Trả lời: Đường chéo của hình hộp chữ nhật bằng nhau và cắt nhau tại trung điểm mỗi đường 
AC’ = 
Vẽ hình: 
 B C
 I
 A D
 O
 B’ C’
A’
D’
Gọi O là giao điểm của các đường chéo hình hộp chữ nhật ABCD.A’B’C’D’.
Ta có OA = OB = OC =OD=OA’=OB’=OC’=OD’
=> O là tâm mặt cầu qua 8 dỉnh hình hộp chữ nhật ABCD.A’B’C’D’ và bán kính r = 
b)
3’
Giao tuyến của mặt phẳng (ABCD) với mặt cầu trên là ?
- Tâm và bán kính của đường tròn giao tuyến này ?
Trả lời: Đường tròn ngoại tiếp hình chữ nhật ABCD.
Trả lời: Trung điểm I của AC và bán kính r = 
Giao của mặt phẳng (ABCD) với mặt cầu là đường tròn ngoại tiếp hình chữ nhật ABCD.
Đường tròn này có tâm I là giao điểm của AC và BD
Bán kính r = 
Hoạt động 8: Giải bài tập 10
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
10’
Để tính diện tích mặt cầu thể tích khối cầu ta phải làm gì ?
Nhắc lại công thức diện tích khối cầu, thể tích khối cầu ?
Hướng dẫn cách xác định tâm mặt cầu ngoại tiếp 1 hình chóp.
- Dựng trục đường tròn ngoại tiếp đa giác đáy.
- Dựng trung trực của cạnh bên cùng nằm trong 1 mặt phẳng với trục đươờn tròn trên.
- Giao điểm của 2 đường trên là tâm của mặt cầu.
. Trục đường tròn ngoại tiếp DSAB
. Đường trung trực của SC trong mp (SC,D) ?
. Tâm của mặt cầu ngoại tiếp hình chóp S.ABC
Tím bán kính của mặt cầu đó.
	S = 4pR2
	V = R3
. Vì DSAB vuông tại S nên trục là đường thẳng (D) qua trung điểm của AB và vuong góc với mp(SAB).
. Đường thẳng qua trung điểm SC và // SI.
. Giao điểm là tâm của mặt cầu.
	 C
	 M
 S O
	 I	B
 A 
. Gọi I là trung điểm AB do DSAB vuông tại S => I là tâm đường tròn ngoại tiếp DSAB .
. Dựng (D) là đường thẳng qua I và D ^(SAB) => D là trục đường tròn ngoại tiếp DSAB.
. Trong (SC,D) dựng trung trực SC cắt (D) tại O => O là tâm mặt cầu ngoại tiếp hình chóp S.ABC.
r2 = OA2 = OI2 + IA2 
= 
=> S = p(a2+b2+c2)
V = 
Củng cố:
Phát biểu định nghĩa mặt cầu, vị trí tương đối của đươờn thẳng với mặt cầu.
Cách xác định tâm của mặt cầu ngoại tiếp một hình chóp.
Bài tập về nhà: 
	Bài tập 4: 
	Hướng dẫn: Giả sử mặt cầu S(O, R) tiếp xúc với 3 cạnh D ABC lần lượt tại A’,B’,C’. Gọi I là hình chiếu của S trên (ABC). Dự đoán I là gì của D ABC ? -> Kết luận OI là đường thẳng nào của D ABC => Dự đoán.
	Bài 8: Hướng dẫn vẽ hình.
	- Giả sử tứ diện ABCD có các cạnh AB, AC, AD, CB, CD, BD lần lượt tiếp xúc với mặt cầu nào đó lần lượt tại M, N, P, Q, R, S.
	Khi đó: AM = AN = AP = a	 A
	 BM = BQ = BS = b
	 	 DP = DQ = DR = c	 P
	 CN = CR = CS = d 	 M	 N	
	=> Kết quả cần chứng minh.	 D
	 B 	 Q	 
	 S	 R
	 C
Rút kinh nghiệm
. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TIẾT:21-22	Ngày soạn: . . . . . . . . . . . . .
ÔN TẬP CHƯƠNG II
I/ Mục tiêu:
Về kiến thức: 
Hệ thống các kiến thức cơ bản về mặt tròn xoay và các yếu tố cơ bản về mặt tròn xoay như trục, đường sinh,... 
Phân biệt được các khái niệm về mặt và khối nón, trụ, cầu và các yếu tố liên quan.
Nắm vững các công thức tính diện tích xung quanh và thể tích của khối nón, khối trụ, công thức tính diện tích mặt cầu và thể tích khối cầu.
Về kỹ năng: 
Vận dụng được các công thức vào việc tính diện tích xung quanh và thể tích của các khối : nón, trụ, cầu.
Rèn luyện kĩ năng vẽ hình cho học sinh. 
Về tư duy, thái độ: 
Rèn luyện tính tích cực, sáng tạo, cẩn thận.
II/ Chuẩn bị của giáo viên và học sinh:
Giáo viên: Giáo án, bảng phụ; phiếu học tập .
Học sinh: SGK, các dụng cụ học tập .
III/ Phương pháp: đạt vấn đề, gợi mở, vấn đáp
IV/ Tiến trình bài học:
Ổn định tổ chức:
Kiểm tra bài cũ:
	CH1: Ghi các công thức tính diện tích và thể tích các mặt và khối:nón, trụ, cầu.
Mặt nón-Khối nón
Mặt trụ-Khối trụ
Mặt cầu-Khối cầu
Diện tích 
Sxq=
Sxq=
S=
Thể tích
V=
V=
V=
	GV chính xác hóa kiến thức, đánh giá và ghi điểm.
Bài mới:
Hoạt động 1: Giải bài toán đúng sai.
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
Đọc đề BT1 SGK
CH1: Qua 3 điểm A,B,C có bao nhiêu mặt phẳng.
CH2: Xét vị trí tương đối giữa mp (ABC) và mặt cầu và trả lời câu a.
CH3: Theo đề mp(ABC) có qua tâm O của mặt cầu không.
CH4: Dựa vào giả thiết nào để khẳng định AB là đường kính của đường tròn hay không.
+ Xem đề SGK /T50
+ Trả lời: Có duy nhất mp(ABC)
+ Mp(ABC) cắt mặt cầu theo giao tuyến là đường tròn qua A,B,C. Suy ra kết quả a đúng.
+ Chưa biết (Có 2 khả năng)
+ Dựa vào CH3 suy ra: b-Không đúng
c-Không đúng.
+Dựa vào giả thiết: =900 và kết quả câu a
Hoạt động 2: Kết hợp BT2 và BT5 SGK/T50.
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
Nêu đề: Cho tứ diện đều ABCD cạnh a. Gọi H là hình chiếu của A trên mp(BCD). N là trung điểm CD
 a- Chứng minh HB=HC=HD. Tính độ dài đoạn AH.
 b- Tính Sxq và V của khối nón tạo thành khi quay miền tam giác AHN quanh cạnh AH.
 c- Tính Sxq và V của khối trụ có đường tròn đáy ngoại tiếp tam giác BCD và chiều cao AH.
Hoạt động 2.1:
CH1: Có nhận xét gì về các tam giác AHB, AHC, AHD. Nêu cách tính AH.
Hoạt động 2.2:
CH: Để tính Sxq của mặt nón và V của khối nón, cần xác định các yếu tố nào?
+Gọi một hs lên bảng thực hiện.
+Cho các hs còn lại nhận xét bài giải, gv đánh giá và ghi điểm
Hoạt động 2.3:
CH: Để tính Sxq của mặt trụ và V của khối trụ, cần xác định các yếu tố nào?
+Gọi một hs lên bảng thực hiện.
+Cho các hs còn lại nhận xét bài giải, gv đánh giá và ghi điểm
- Vẽ hình (GV hướng dẫn nếu cần)
TL: Chúng là 3 tam giác vuông bằng nhau.
Suy ra HB=HC=HD
AH=
+Cần xác định độ dài đường sinh l = AN, bán kính đường tròn đáy r = HN và đường cao h=AH.
+Cần xác định độ dài đường sinh l = AB, bán kính đường tròn đáy r = BH và đường cao h=l
a) AH (BCD)
=> Các tam giác AHB, AHC, AHD vuông tại H
Lại có: AH cạnh chung
	AB=AC=AD(ABCD là tứ diện đều)
=> 3 tam giác AHB, AHC, AHD bằng nhau
Suy ra HB=HC=HD
*AH=
 ==
b) Khối nón tạo thành có:
 Sxq=rl=..
 =
V=
 ==
c) Khối trụ tạo thành có:
Sxq=2rl
=2.=
V=B.h= =
Tiết 22
*Hoạt động 3: BT 6/50 SGK
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
+ Nêu đề.
Hoạt động 3.1: Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp.
CH 1: Trình bày pp xác định tâm mặt cầu ngoại tiếp hình chóp. 
+ Nhận xét câu trả lời của hs và nhắc lại các bước:
1. Xác định trục Δ của đường tròn ngoại tiếp đa giác đáy.
2. Xác định mặt phẳng trung trực () (hoặc đường trung trực d) của cạnh bên bất kì.
3. Xác định giao điểm của Δ với () (hoặc của Δ với d) . Đó chính là tâm mặt cầu cần tìm.
CH 2: Đường tròn ngoại tiếp hình vuông ABCD có trục là đường thẳng nào?
CH 3: Có nhận xét gì về hai tam giác SAO và SMO’. Nêu cách tính bán kính R của mặt cầu.
Hoạt động 3.2: Tính diện tích mặt cầu và thể tích khối cầu.
CH : Nêu lại công thức tính diện tích mặt cầu và thể tích khối cầu. 
+ HS vẽ hình
+ Lắng nghe và trả lời.
+ Suy nghĩ trả lời câu hỏi.
+ Đó là hai tam giác vuông có chung góc nhọn nên chúng đồng dạng
 => 
+ S = 4πR2
+ V = 
 a. Gọi O’, R lần lượt là tâm và bán kính của mặt cầu
Vì O’A=O’B=O’C=O’D
 => O’ thuộc SO (1)
Trong (SAO), gọi M là trung điểm của SA và d là đường trung trực của đoạn SA
Vì O’S = O’A 
=> O’ thuộc d (2)
Từ (1) và (2) =>O’=SOd
+ R = O’S.
Hai tam giác vuông SAO và SMO’ đồng dạng nên:
Trong đó SA=
=> SO'==R
b) Mặt cầu có bán kính R= nên:
+ S=4π=
+ V= =
Củng cố:
 *Hoạt động 4: Giải bài tập trắc nghiệm theo nhóm(củng cố toàn bài)
Câu 1) Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. 
 1.1 Gọi S là diện tích xung quanh của hình trụ có hai đường tròn đáy ngoại tiếp hai hình vuông ABCD và A’B’C’D’. Diện tích S là:
A) πa2	B) 	C) 	D) 
	1.2 Gọi S’ là diện tích xung quanh của hình nón tròn xoay được sinh ra bởi đoạn thẳng AC’ khi quay xung quanh trục AA’. Diện tích S’ là:
	A) πa2	B) 	C) 	D) 
Câu 2) Số mặt cầu chứa một đường tròn cho trước là:
	A) 1	B) 2	C) vô số	D) 0
Câu 3) Hình chóp S.ABC có đáy là tam giác ABC vuông tại A, có SA vuông góc với mp(ABC) và có SA=a, AB=b, AC=c. Mặt cầu đi qua các đỉnh A,B,C,S có bán kính r bằng:
	A) 	B) 	C) 	D) 
Câu 4) Cho hình trụ có bán kính đáy bằng r. Gọi O,O’ là tâm của hai đáy với OO’ = 2r. Một mặt cầu (S) tiếp xúc với hai đáy của hình trụ tại O và O’. Trong các mệnh đề dưới đây mệnh đề nào sai?
	A) Diện tích mặt cầu bằng diện tích xung quanh của hình trụ.
	B) Diện tích mặt cầu bằng diện tích toàn phần của hình trụ.
	C) Thể tích khối cầu bằng thể tích khối trụ.
	D) Thể tích khối cầu bằng thể tích khối trụ.
Cho các nhóm nêu đáp án và đại diện trình bày phương pháp giải theo chỉ định câu hỏi của GV.
GV nhận xét, đánh giá và ghi điểm cho nhóm.
Bài tập về nhà: 
- Về nhà làm các bài tập ôn chương còn lại
- Chuẩn bị cho bài kiểm tra 1 tiết vào tiết tiếp theo.
Rút kinh nghieäm
. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Tài liệu đính kèm:

  • docCII.doc