Giáo án lớp 12 môn Giải tích - Tiết 82 - Luyện tập: Dạng lượng giác của số phức và ứng dụng

Giáo án lớp 12 môn Giải tích - Tiết 82 - Luyện tập: Dạng lượng giác của số phức và ứng dụng

1. Về kiến thức:

• Acgumen của số phức; dạng lượng giác của số phức; công thức nhân, chia số phức dưới dạng lượng giác; công thức Moa-vrơ)

2. Về kỷ năng:

• Tìm acgumen của số phức

• Viết số phức dưới dạng lượng giác

• Thực hiện phép tính nhân chia số phức dưới dạng lượng giác.

3. Về tư duy thái độ:

• Có thái độ hợp tác

• Tích cực hoạt động

• Biết qui lạ về quen, biết tổng hợp kiến thức,vận dụng linh hoạt vào việc giải bài tập.

 

doc 5 trang Người đăng haha99 Lượt xem 980Lượt tải 0 Download
Bạn đang xem tài liệu "Giáo án lớp 12 môn Giải tích - Tiết 82 - Luyện tập: Dạng lượng giác của số phức và ứng dụng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tiết:82	 Ngày soạn: .. . . . . . . . . .
LUYỆN TẬP: DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC VÀ ỨNG DỤNG 
I. MỤC TIÊU:
Về kiến thức:
Acgumen của số phức; dạng lượng giác của số phức; công thức nhân, chia số phức dưới dạng lượng giác; công thức Moa-vrơ)
Về kỷ năng:
Tìm acgumen của số phức
Viết số phức dưới dạng lượng giác
Thực hiện phép tính nhân chia số phức dưới dạng lượng giác.
Về tư duy thái độ:
Có thái độ hợp tác 
Tích cực hoạt động
Biết qui lạ về quen, biết tổng hợp kiến thức,vận dụng linh hoạt vào việc giải bài tập. 
II. CHUẨN BỊ CỦA THẦY VÀ TRÒ:
Chuẩn bị của thầy :
Giáo án, phiếu học tập 
Chuẩn bị của trò:
Học bài và làm bài tập ở nhà..
III. PHƯƠNG PHÁP DẠY HỌC: 
Gợi mở, chất vấn,hoạt động nhóm,
IV. TIẾN TRÌNH BÀI HỌC:
Ổn định tổ chức: kiểm tra sỉ số, 
Kiểm tra bài cũ :
Bài mới:
HĐ1: Củng cố và rèn luyện kỹ năng viết dạng lượng giác của số phức
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
10'
+CH1(Nêu cho cả lớp)
Để tìm dạng lượng giác r(cos + isin) của số phức a + bi khác 0 cho trước ta cần tính các yếu tố nào?
Chỉ định 1 HS trả lời
GV: chính xác hóa vấn đề
+ Chỉ định 1 học sinh lên bảng giải 36a
Gọi một học sinh nhận xét bài làm của bạn
 GV: chính xác hóa,chỉnh sửa (nếu có),cho điểm.
Trả lời:
r = 
: trong đó 
cos= ,sin= 
1 HS lên bảng giải
Các học sinh còn lại giải vào giấy nháp
Hs nhận xét
Ghi nhận vấn đề
Đề BT 36a Sgk
Bài giải của học sinh
 (đã chỉnh sửa)
ĐS: z = 
Hướng dẫn giải BT 36b
Tiếp thu, về nhà giải 
+ Chỉ định 1 học sinh lên bảng giải 36c
Gọi một học sinh nhận xét bài làm của bạn
 GV: chính xác hóa,chỉnh sửa (nếu có), cho điểm 
HĐ thêm: Có thể dùng công thức chia 2 số phức dạng lượng giác để giải
Khắc sâu: r > 0 suy ra các trường hợp
1 HS lên bảng giải
Các học sinh còn lại giải vào giấy nháp
Hs nhận xét
Ghi nhận vấn đề
Đề BT 36c Sgk
Bài giải của học sinh
 (đã chỉnh sửa)
ĐS: 
Nếu sin>0 thì z = 
2sin
Nếu sin<0 thì z = 
-2sin
Nếu sin=0 thì 
 z = 0(cos+ isin) (R)
HĐ2: Bt Áp đụng công thức Moa-vrơ
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
5'
+CH2(Nêu cho cả lớp)
Nêu công thức Moa-vrơ Chỉ định 1 HS trả lời
GV: chính xác hóa vấn đề
+ Chỉ định 1 học sinh lên bảng giải 32
Gọi một học sinh nhận xét bài làm của bạn
 GV: chính xác hóa,chỉnh sửa (nếu có), cho điểm. 
Hs trả lời
1 HS lên bảng giải
Các học sinh còn lại giải vào giấy nháp
Hs nhận xét
Ghi nhận vấn đề
Ghi công thức Moa-vrơ
Đề BT 32 Sgk
Bài giải của học sinh
 (đã chỉnh sửa)
ĐS: 
cos4=
cos4+sin4- 6cos2sin2 
sin4=
4cos3sin- 4sin3cos 
HĐ3: Bt kết hợp dạng lượng giác của số phức và áp dụng công thức Moa-vrơ
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
7'
+ Chỉ định 1 học sinh lên bảng giải 33a và 33c
Chia bảng làm 2 cột
Gợi ý: Viết dạng lượng giác của số phức z rồi áp dụng công thức Moa-vrơ để tính zn.
Gọi một học sinh nhận xét bài làm của bạn
 GV: chính xác hóa,chỉnh sửa (nếu có), cho điểm. 
1 HS lên bảng giải
Các học sinh còn lại giải vào giấy nháp
Hs nhận xét
Ghi nhận vấn đề
Đề BT 33a và 33c Sgk
Bài giải của học sinh
 (đã chỉnh sửa)
ĐS: 
a/ (
c/ 
HĐ4: Hướng dẫn giải Bt 34
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
5’
Hướng dẫn:
Viết dạng l.giác của 
Dùng công thức Moa-vrơ để n.
+CH3(Nêu cho cả lớp)
n là số thực khi nào?
n là số ảo khi nào?
Giáo viên dẫn dắt đi đến kết quả
Nghe hiểu ,tiếp thu
Trả lời:
 sin=0,
 cos=0
Ghi nhận
ĐS: 
 = cosisin
n = cosisin
a/ n là số thực khi n là bội nguyên dương của 3
b/ Không tồn tại n để n là số ảo
HĐ5: Hướng dẫn giải Bt 35 – Nhân, chia số phức dạng lượng giác
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
5’
+CH3(Nêu cho cả lớp)
1)Công thức nhân, chia số phức dạng lượng giác?
2)Cách tính acgumen và môđun của tích hoặc thương 2 số phức?
3) Dạng lượng giác của căn bậc 2 của số phức z?
 4) Acgumen của i? suy ra của z = ?
Gợi ý dẫn dắt để các em có được kiến thức chính xác. 
Trả lời:
 suy ra 
Đề BT 35a Sgk
Đáp số 
a) Acgumen của z = là
z = 3 
Dạng lượng giác của căn bậc 2 của số phức z là:
()
Hướng dẫn: Gọi acgumen của z là ,tính acgumen của theo rồi suy ra .
Nghe hiểu, ghi nhận
Đề BT 35b Sgk
Gọi là 1 acgumen của z là 
suy ra 1 acgumen của là - 
suy ra có 1 acgumen là --
Từ giả thiết suy ra
- - = - +k.2(kZ)
 Suy ra = +l.2(lZ)
chọn = 
Đáp số z = 
Dạng lượng giác của căn bậc 2 của số phức z là:
HĐ6: Hoạt động nhóm củng cố kiến thức
HĐ CỦA GV
HĐ CỦA HS
GHI BẢNG
10’
Phát phiếu học tập cho học sinh(6 nhóm)
Gọi đại diện 2 nhóm 1,2 trình bày bài giải vào 2 cột bảng( mỗi nhóm trình bày 1 bài)
Gọi HS nhóm khác nhận xét
Giáo viên chỉnh sửa(nếu cần)
Thảo luận làm bài
Thực hiện yêu cầu
Tham gia nhận xét
Ghi nhận 
Bài giải HS(đã chỉnh sửa)
1/ z= Suy ra z12 = ()12(- 1 + 0)
 = -26 
2/ Gọi là 1 acgumen của z là 
suy ra 1 acgumen của là - 
(1 acgumen của 2 + 2i là )
 suy ra có 1 acgumen là - 
Từ giả thiết suy ra
- = - +k.2(kZ)
 Suy ra = +l.2(lZ)
chọn = 
Đáp số z = 2 
Dạng lượng giác của căn bậc 2 của số phức z là:
và 
Củng cố toàn bài:
Về nhà ôn bài và làm phần BT ôn chương
 BT thêm: Tìm n để a/ là số thực. b/ là số ảo. 
PHIẾU HỌC TẬP
1/ Viết dạng lượng giác của số phức z = rồi tính z12.
2/ Viết dạng lượng giác của số phức z biết =2 và 1 acgumen của là - . 
Ruùt kinh nghieäm 
. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. 
. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 

Tài liệu đính kèm:

  • docT82_CIV.doc